On the boundary limits of harmonic functions with gradient in Lp
Annales de l'Institut Fourier, Tome 34 (1984) no. 1, pp. 99-109.

Dans cet article on étudie l’allure tangentielle à la frontière des fonctions harmoniques dans la classe de Sobolev W1p(R+n), où R+n est le demi-espace de Rn. On donne une généralisation du résultat récent de Cruzeiro (C.R.A.S., Paris, 294 (1982), 71–74), dans le cas p=n. Ici on utilise la représentation intégrale des fonctions de Beppo-Levi de Ohtsuka (Lecture Notes, Hiroshima Univ., 1973), et notre méthode est différente de celle de Nagel, Rudin et Shapiro (Ann. of Math., 116 (1982), 331–360).

This paper deals with tangential boundary behaviors of harmonic functions with gradient in Lebesgue classes. Our aim is to extend a recent result of Cruzeiro (C.R.A.S., Paris, 294 (1982), 71–74), concerning tangential boundary limits of harmonic functions with gradient in Ln(R+n), R+n denoting the upper half space of the n-dimensional euclidean space Rn. Our method used here is different from that of Nagel, Rudin and Shapiro (Ann. of Math., 116 (1982), 331–360); in fact, we use the integral representation of precise functions given by Ohtsuka (Lecture Notes, Hiroshima Univ., 1973).

@article{AIF_1984__34_1_99_0,
     author = {Mizuta, Yoshihiro},
     title = {On the boundary limits of harmonic functions with gradient in $L^p$},
     journal = {Annales de l'Institut Fourier},
     pages = {99--109},
     publisher = {Imprimerie Louis-Jean},
     address = {Gap},
     volume = {34},
     number = {1},
     year = {1984},
     doi = {10.5802/aif.952},
     mrnumber = {85f:31009},
     zbl = {0522.31009},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/aif.952/}
}
TY  - JOUR
AU  - Mizuta, Yoshihiro
TI  - On the boundary limits of harmonic functions with gradient in $L^p$
JO  - Annales de l'Institut Fourier
PY  - 1984
SP  - 99
EP  - 109
VL  - 34
IS  - 1
PB  - Imprimerie Louis-Jean
PP  - Gap
UR  - https://www.numdam.org/articles/10.5802/aif.952/
DO  - 10.5802/aif.952
LA  - en
ID  - AIF_1984__34_1_99_0
ER  - 
%0 Journal Article
%A Mizuta, Yoshihiro
%T On the boundary limits of harmonic functions with gradient in $L^p$
%J Annales de l'Institut Fourier
%D 1984
%P 99-109
%V 34
%N 1
%I Imprimerie Louis-Jean
%C Gap
%U https://www.numdam.org/articles/10.5802/aif.952/
%R 10.5802/aif.952
%G en
%F AIF_1984__34_1_99_0
Mizuta, Yoshihiro. On the boundary limits of harmonic functions with gradient in $L^p$. Annales de l'Institut Fourier, Tome 34 (1984) no. 1, pp. 99-109. doi : 10.5802/aif.952. https://www.numdam.org/articles/10.5802/aif.952/

[1] L. Carleson, Selected Problems on exceptional sets, Van Nostrand, Princeton, 1967. | MR | Zbl

[2] A.B. Cruzeiro, Convergence au bord pour les fonctions harmoniques dans Rd de la classe de Sobolev Wd1, C.R.A.S., Paris, 294 (1982), 71-74. | MR | Zbl

[3] N.G. Meyers, A theory of capacities for potentials in Lebesgue classes, Math. Scand., 26 (1970), 255-292. | MR | Zbl

[4] N.G. Meyers, Continuity properties of potentials, Duke Math. J., 42 (1975), 157-166. | MR | Zbl

[5] Y. Mizuta, On the existence of boundary values of Beppo Levi functions defined in the upper half space of Rn, Hiroshima Math. J., 6 (1976), 61-72. | MR | Zbl

[6] Y. Mizuta, Existence of various boundary limits of Beppo Levi functions of higher order, Hiroshima Math. J., 9 (1979), 717-745. | MR | Zbl

[7] A. Nagel, W. Rudin and J.H. Shapiro, Tangential boundary behavior of functions in Dirichlet-type spaces, Ann. of Math., 116 (1982), 331-360. | MR | Zbl

[8] M. Ohtsuka, Extremal length and precise functions in 3-space, Lecture Notes, Hiroshima Univ., 1973.

[9] E.M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, 1970. | MR | Zbl

[10] H. Wallin, On the existence of boundary values of a class of Beppo Levi functions, Trans. Amer. Math. Soc., 120 (1965), 510-525. | MR | Zbl

[11] J.-M. G. Wu, Lp-densities and boundary behaviors of Green potentials, Indiana Univ. Math. J., 28 (1979), 895-911. | Zbl

[12] W.P. Ziemer, Extremal length as a capacity, Michigan Math. J., 17 (1970), 117-128. | MR | Zbl

  • Twomey, J. B. Poisson integrals of Bessel potentials, Journal d'Analyse Mathématique, Volume 125 (2015) no. 1, p. 227 | DOI:10.1007/s11854-015-0007-3
  • Twomey, J. B. Boundary Behaviour and Taylor Coefficients of Besov Functions, Computational Methods and Function Theory, Volume 14 (2014) no. 2-3, p. 541 | DOI:10.1007/s40315-014-0070-2
  • Twomey, J.B. Tangential Growth and Exceptional Sets in the Dirichlet Space, Mathematical Proceedings of the Royal Irish Academy, Volume 112 (2012) no. 1, p. 37 | DOI:10.3318/pria.2012.112.5
  • Twomey, J. B. THE BOUNDARY VALUES OF A FUNCTION IN THE DIRICHLET SPACE, Mathematical Proceedings of the Royal Irish Academy, Volume 110 (2011) no. -1, p. 149 | DOI:10.3318/pria.2010.110.2.149
  • Holland, Finbarr; Twomey, J. Brian Boundary Behaviour of Functions in Weighted Dirichlet Spaces, Computational Methods and Function Theory, Volume 7 (2007) no. 2, p. 361 | DOI:10.1007/bf03321650
  • Matsumoto, Shigeki; Mizuta, Yoshihiro On the existence of tangential limits of monotone BLD functions, Hiroshima Mathematical Journal, Volume 26 (1996) no. 2 | DOI:10.32917/hmj/1206127365
  • Aikawa, Hiroaki Bessel capacity, Hausdorff content and the tangential boundary behavior of harmonic functions, Hiroshima Mathematical Journal, Volume 26 (1996) no. 2 | DOI:10.32917/hmj/1206127368
  • Koskela, Pekka; Manfredi, Juan; Villamor, Enrique Regularity theory and traces of 𝒜-harmonic functions, Transactions of the American Mathematical Society, Volume 348 (1996) no. 2, p. 755 | DOI:10.1090/s0002-9947-96-01430-4
  • Mizuta, Yoshihiro Boundary limits of polyharmonic functions in sobolev-orlicz spaces, Complex Variables, Theory and Application: An International Journal, Volume 27 (1995) no. 2, p. 117 | DOI:10.1080/17476939508814810
  • Mizuta, Yoshihiro Boundary behavior of p-precise functions on a half space of Rn, Hiroshima Mathematical Journal, Volume 18 (1988) no. 1 | DOI:10.32917/hmj/1206129862
  • Mizuta, Yoshihiro On the boundary limits of harmonic functions, Hiroshima Mathematical Journal, Volume 18 (1988) no. 1 | DOI:10.32917/hmj/1206129868
  • Dorronsoro, José R. On the differentiability of Lipschitz-Besov functions, Transactions of the American Mathematical Society, Volume 303 (1987) no. 1, p. 229 | DOI:10.1090/s0002-9947-1987-0896019-5
  • Dorronsoro, José R. Poisson integrals of regular functions, Transactions of the American Mathematical Society, Volume 297 (1986) no. 2, p. 669 | DOI:10.1090/s0002-9947-1986-0854092-3

Cité par 13 documents. Sources : Crossref