Dans cet article on étudie l’allure tangentielle à la frontière des fonctions harmoniques dans la classe de Sobolev
This paper deals with tangential boundary behaviors of harmonic functions with gradient in Lebesgue classes. Our aim is to extend a recent result of Cruzeiro (C.R.A.S., Paris, 294 (1982), 71–74), concerning tangential boundary limits of harmonic functions with gradient in
@article{AIF_1984__34_1_99_0, author = {Mizuta, Yoshihiro}, title = {On the boundary limits of harmonic functions with gradient in $L^p$}, journal = {Annales de l'Institut Fourier}, pages = {99--109}, publisher = {Imprimerie Louis-Jean}, address = {Gap}, volume = {34}, number = {1}, year = {1984}, doi = {10.5802/aif.952}, mrnumber = {85f:31009}, zbl = {0522.31009}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.952/} }
TY - JOUR AU - Mizuta, Yoshihiro TI - On the boundary limits of harmonic functions with gradient in $L^p$ JO - Annales de l'Institut Fourier PY - 1984 SP - 99 EP - 109 VL - 34 IS - 1 PB - Imprimerie Louis-Jean PP - Gap UR - https://www.numdam.org/articles/10.5802/aif.952/ DO - 10.5802/aif.952 LA - en ID - AIF_1984__34_1_99_0 ER -
%0 Journal Article %A Mizuta, Yoshihiro %T On the boundary limits of harmonic functions with gradient in $L^p$ %J Annales de l'Institut Fourier %D 1984 %P 99-109 %V 34 %N 1 %I Imprimerie Louis-Jean %C Gap %U https://www.numdam.org/articles/10.5802/aif.952/ %R 10.5802/aif.952 %G en %F AIF_1984__34_1_99_0
Mizuta, Yoshihiro. On the boundary limits of harmonic functions with gradient in $L^p$. Annales de l'Institut Fourier, Tome 34 (1984) no. 1, pp. 99-109. doi : 10.5802/aif.952. https://www.numdam.org/articles/10.5802/aif.952/
[1] Selected Problems on exceptional sets, Van Nostrand, Princeton, 1967. | MR | Zbl
,[2] Convergence au bord pour les fonctions harmoniques dans Rd de la classe de Sobolev Wd1, C.R.A.S., Paris, 294 (1982), 71-74. | MR | Zbl
,[3] A theory of capacities for potentials in Lebesgue classes, Math. Scand., 26 (1970), 255-292. | MR | Zbl
,[4] Continuity properties of potentials, Duke Math. J., 42 (1975), 157-166. | MR | Zbl
,[5] On the existence of boundary values of Beppo Levi functions defined in the upper half space of Rn, Hiroshima Math. J., 6 (1976), 61-72. | MR | Zbl
,[6] Existence of various boundary limits of Beppo Levi functions of higher order, Hiroshima Math. J., 9 (1979), 717-745. | MR | Zbl
,[7] Tangential boundary behavior of functions in Dirichlet-type spaces, Ann. of Math., 116 (1982), 331-360. | MR | Zbl
, and ,[8] Extremal length and precise functions in 3-space, Lecture Notes, Hiroshima Univ., 1973.
,[9] Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, 1970. | MR | Zbl
,[10] On the existence of boundary values of a class of Beppo Levi functions, Trans. Amer. Math. Soc., 120 (1965), 510-525. | MR | Zbl
,[11] Lp-densities and boundary behaviors of Green potentials, Indiana Univ. Math. J., 28 (1979), 895-911. | Zbl
,[12] Extremal length as a capacity, Michigan Math. J., 17 (1970), 117-128. | MR | Zbl
,- Poisson integrals of Bessel potentials, Journal d'Analyse Mathématique, Volume 125 (2015) no. 1, p. 227 | DOI:10.1007/s11854-015-0007-3
- Boundary Behaviour and Taylor Coefficients of Besov Functions, Computational Methods and Function Theory, Volume 14 (2014) no. 2-3, p. 541 | DOI:10.1007/s40315-014-0070-2
- Tangential Growth and Exceptional Sets in the Dirichlet Space, Mathematical Proceedings of the Royal Irish Academy, Volume 112 (2012) no. 1, p. 37 | DOI:10.3318/pria.2012.112.5
- THE BOUNDARY VALUES OF A FUNCTION IN THE DIRICHLET SPACE, Mathematical Proceedings of the Royal Irish Academy, Volume 110 (2011) no. -1, p. 149 | DOI:10.3318/pria.2010.110.2.149
- Boundary Behaviour of Functions in Weighted Dirichlet Spaces, Computational Methods and Function Theory, Volume 7 (2007) no. 2, p. 361 | DOI:10.1007/bf03321650
- On the existence of tangential limits of monotone BLD functions, Hiroshima Mathematical Journal, Volume 26 (1996) no. 2 | DOI:10.32917/hmj/1206127365
- Bessel capacity, Hausdorff content and the tangential boundary behavior of harmonic functions, Hiroshima Mathematical Journal, Volume 26 (1996) no. 2 | DOI:10.32917/hmj/1206127368
- Regularity theory and traces of 𝒜-harmonic functions, Transactions of the American Mathematical Society, Volume 348 (1996) no. 2, p. 755 | DOI:10.1090/s0002-9947-96-01430-4
- Boundary limits of polyharmonic functions in sobolev-orlicz spaces, Complex Variables, Theory and Application: An International Journal, Volume 27 (1995) no. 2, p. 117 | DOI:10.1080/17476939508814810
- Boundary behavior of
-precise functions on a half space of , Hiroshima Mathematical Journal, Volume 18 (1988) no. 1 | DOI:10.32917/hmj/1206129862 - On the boundary limits of harmonic functions, Hiroshima Mathematical Journal, Volume 18 (1988) no. 1 | DOI:10.32917/hmj/1206129868
- On the differentiability of Lipschitz-Besov functions, Transactions of the American Mathematical Society, Volume 303 (1987) no. 1, p. 229 | DOI:10.1090/s0002-9947-1987-0896019-5
- Poisson integrals of regular functions, Transactions of the American Mathematical Society, Volume 297 (1986) no. 2, p. 669 | DOI:10.1090/s0002-9947-1986-0854092-3
Cité par 13 documents. Sources : Crossref