We construct moduli spaces of representations of quivers over arbitrary schemes and show how moduli spaces of pointed curves of genus zero like the Grothendieck–Knudsen moduli spaces and the Losev–Manin moduli spaces can be interpreted as inverse limits of moduli spaces of representations of certain bipartite quivers. We also investigate the case of more general Hassett moduli spaces of weighted pointed stable curves of genus zero.
Revised:
Accepted:
Published online:
Keywords: Moduli spaces, quiver representations, geometric invariant theory, algebraic stacks, root systems.
@article{ALCO_2021__4_1_89_0, author = {Blume, Mark and Hille, Lutz}, title = {Quivers and moduli spaces of pointed curves of genus zero}, journal = {Algebraic Combinatorics}, pages = {89--124}, publisher = {MathOA foundation}, volume = {4}, number = {1}, year = {2021}, doi = {10.5802/alco.152}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/alco.152/} }
TY - JOUR AU - Blume, Mark AU - Hille, Lutz TI - Quivers and moduli spaces of pointed curves of genus zero JO - Algebraic Combinatorics PY - 2021 SP - 89 EP - 124 VL - 4 IS - 1 PB - MathOA foundation UR - http://archive.numdam.org/articles/10.5802/alco.152/ DO - 10.5802/alco.152 LA - en ID - ALCO_2021__4_1_89_0 ER -
Blume, Mark; Hille, Lutz. Quivers and moduli spaces of pointed curves of genus zero. Algebraic Combinatorics, Volume 4 (2021) no. 1, pp. 89-124. doi : 10.5802/alco.152. http://archive.numdam.org/articles/10.5802/alco.152/
[1] Adequate moduli spaces and geometrically reductive group schemes, Algebr. Geom., Volume 1 (2014) no. 4, pp. 489-531 (https://arxiv.org/abs/1005.2398) | DOI | MR | Zbl
[2] Schémas en groupes, espaces homogènes et espaces algébriques sur une base de dimension 1, Sur les groupes algébriques (Bull. Soc. Math. France, Mém.), Volume 33, Soc. Math. France, 1973, pp. 5-79 | DOI | Numdam | MR | Zbl
[3] The functor of toric varieties associated with Weyl chambers and Losev–Manin moduli spaces, Tohoku Math. J. (2), Volume 63 (2011) no. 4, pp. 581-604 (https://arxiv.org/abs/0911.3607) | DOI | MR | Zbl
[4] Topologies de Grothendieck, descente, quotients, Autour des schémas en groupes. Vol. I (Panor. Synthèses), Volume 42/43, Soc. Math. France, Paris, 2014, pp. 1-62 (https://arxiv.org/abs/1210.0431) | MR | Zbl
[5] Notes on GIT-fans for quivers (https://arxiv.org/abs/0805.1440)
[6] Subrepresentations of general representations of quivers, Bull. London Math. Soc., Volume 28 (1996) no. 4, pp. 363-366 | DOI | MR | Zbl
[7] Variation of geometric invariant theory quotients, Publ. Math., Inst. Hautes Étud. Sci. (1998) no. 87, pp. 5-51 (https://arxiv.org/abs/alg-geom/9402008) | DOI | Numdam | MR | Zbl
[8] Combinatorial geometries, convex polyhedra, and Schubert cells, Adv. in Math., Volume 63 (1987) no. 3, pp. 301-316 | DOI | MR | Zbl
[9] Discriminants, resultants, and multidimensional determinants, Mathematics: Theory & Applications, Birkhäuser Boston, Inc., Boston, MA, 1994, x+523 pages | DOI | MR | Zbl
[10] Stable -pointed trees of projective lines, Nederl. Akad. Wetensch. Indag. Math., Volume 50 (1988) no. 2, pp. 131-163 | DOI | MR | Zbl
[11] GIT compactifications of and flips, Adv. Math., Volume 248 (2013), pp. 242-278 (https://arxiv.org/abs/1112.0232) | DOI | MR | Zbl
[12] Éléments de géométrie algébrique. I–IV, Publ. Math., Inst. Hautes Ãtud. Sci., Volume 4, 8, 11, 17, 20, 24, 28, 32 (1960–1967) | Zbl
[13] Éléments de géométrie algébrique. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 166, Springer-Verlag, Berlin, 1971, ix+466 pages | MR | Zbl
[14] Séminaire de géométrie algébrique, Groupes de Monodromie en Géométrie Algébrique, Tome 1, Lecture Notes in Mathematics, 288, Springer, 1972 | Zbl
[15] Moduli spaces of weighted pointed stable curves, Adv. Math., Volume 173 (2003) no. 2, pp. 316-352 (https://arxiv.org/abs/math/0205009) | DOI | MR | Zbl
[16] Stable representations of quivers, J. Pure Appl. Algebra, Volume 172 (2002) no. 2-3, pp. 205-224 | DOI | MR | Zbl
[17] Chow quotients of Grassmannians. I, I. M. Gelʼfand Seminar (Adv. Soviet Math.), Volume 16, Amer. Math. Soc., Providence, RI, 1993, pp. 29-110 (https://arxiv.org/abs/alg-geom/9210002) | DOI | MR | Zbl
[18] Veronese curves and Grothendieck–Knudsen moduli space , J. Algebraic Geom., Volume 2 (1993) no. 2, pp. 239-262 | MR | Zbl
[19] Quotients of toric varieties, Math. Ann., Volume 290 (1991) no. 4, pp. 643-655 | DOI | MR | Zbl
[20] Moduli of representations of finite-dimensional algebras, Quart. J. Math. Oxford Ser. (2), Volume 45 (1994) no. 180, pp. 515-530 | DOI | MR | Zbl
[21] The projectivity of the moduli space of stable curves. II. The stacks , Math. Scand., Volume 52 (1983) no. 2, pp. 161-199 | DOI | MR | Zbl
[22] Autour de la platitude, Bull. Soc. Math. France, Volume 97 (1969), pp. 81-128 | DOI | Numdam | MR | Zbl
[23] New moduli spaces of pointed curves and pencils of flat connections, Michigan Math. J., Volume 48 (2000), pp. 443-472 (https://arxiv.org/abs/math/0001003) | DOI | MR | Zbl
[24] Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], 34, Springer-Verlag, Berlin, 1994, xiv+292 pages | DOI | MR
[25] The GIT-equivalence for -line bundles, Geom. Dedicata, Volume 81 (2000) no. 1-3, pp. 295-324 (https://arxiv.org/abs/math/9811053) | DOI | MR | Zbl
[26] General representations of quivers, Proc. London Math. Soc. (3), Volume 65 (1992) no. 1, pp. 46-64 | DOI | MR | Zbl
[27] Cross ratio varieties for root systems, Kyushu J. Math., Volume 48 (1994) no. 1, pp. 123-168 | DOI | MR
[28] Cross ratio varieties for root systems of type and the Terada model, J. Math. Sci. Univ. Tokyo, Volume 3 (1996) no. 1, pp. 181-197 | MR | Zbl
[29] Geometric reductivity over arbitrary base, Advances in Math., Volume 26 (1977) no. 3, pp. 225-274 | DOI | MR | Zbl
[30] Stacks Project (https://stacks.math.columbia.edu)
[31] Geometric invariant theory and flips, J. Amer. Math. Soc., Volume 9 (1996) no. 3, pp. 691-723 (https://arxiv.org/abs/alg-geom/9405004) | DOI | MR | Zbl
[32] Complete collineations revisited, Math. Ann., Volume 315 (1999) no. 3, pp. 469-495 (https://arxiv.org/abs/math/9808114) | DOI | MR | Zbl
Cited by Sources: