On residual connectedness in chiral geometries
Algebraic Combinatorics, Volume 4 (2021) no. 3, pp. 491-499.

We show that a chiral coset geometry constructed from a C + -group necessarily satisfies residual connectedness and is therefore a hypertope.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.162
Classification: 51E24, 52B11, 20F05
Keywords: coset geometries, hypertopes, chirality, $C^+$-groups, residual connectedness.
Leemans, Dimitri 1; Tranchida, Philippe 2

1 Université Libre de Bruxelles Département de Mathématique C.P.216 - Algèbre et Combinatoire Boulevard du Triomphe 1050 Brussels, Belgium
2 Department of Mathematical Sciences KAIST, 291 Daehak-ro Yuseong-gu Daejeon, 34141, South Korea
@article{ALCO_2021__4_3_491_0,
     author = {Leemans, Dimitri and Tranchida, Philippe},
     title = {On residual connectedness in chiral geometries},
     journal = {Algebraic Combinatorics},
     pages = {491--499},
     publisher = {MathOA foundation},
     volume = {4},
     number = {3},
     year = {2021},
     doi = {10.5802/alco.162},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/alco.162/}
}
TY  - JOUR
AU  - Leemans, Dimitri
AU  - Tranchida, Philippe
TI  - On residual connectedness in chiral geometries
JO  - Algebraic Combinatorics
PY  - 2021
SP  - 491
EP  - 499
VL  - 4
IS  - 3
PB  - MathOA foundation
UR  - http://archive.numdam.org/articles/10.5802/alco.162/
DO  - 10.5802/alco.162
LA  - en
ID  - ALCO_2021__4_3_491_0
ER  - 
%0 Journal Article
%A Leemans, Dimitri
%A Tranchida, Philippe
%T On residual connectedness in chiral geometries
%J Algebraic Combinatorics
%D 2021
%P 491-499
%V 4
%N 3
%I MathOA foundation
%U http://archive.numdam.org/articles/10.5802/alco.162/
%R 10.5802/alco.162
%G en
%F ALCO_2021__4_3_491_0
Leemans, Dimitri; Tranchida, Philippe. On residual connectedness in chiral geometries. Algebraic Combinatorics, Volume 4 (2021) no. 3, pp. 491-499. doi : 10.5802/alco.162. http://archive.numdam.org/articles/10.5802/alco.162/

[1] Buekenhout, Francis; Cohen, Arjeh M. Diagram geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 57, Springer, Heidelberg, 2013, xiv+592 pages (Related to classical groups and buildings) | DOI | MR | Zbl

[2] Catalano, Domenico; Fernandes, M. Elisa; Hubard, Isabel; Leemans, Dimitri Hypertopes with tetrahedral diagram, Electron. J. Combin., Volume 25 (2018) no. 3, Paper 3.22, 21 pages | MR | Zbl

[3] Ens, Eric Rank 4 toroidal hypertopes, Ars Math. Contemp., Volume 15 (2018) no. 1, pp. 67-79 | DOI | MR | Zbl

[4] Fernandes, Maria Elisa; Leemans, Dimitri C-groups of high rank for the symmetric groups, J. Algebra, Volume 508 (2018), pp. 196-218 | DOI | MR | Zbl

[5] Fernandes, Maria Elisa; Leemans, Dimitri; Piedade, Claudio A.; Weiss, Asia Ivić Two families of locally toroidal regular 4-hypertopes arising from toroids (to appear in Contemp. Math.)

[6] Fernandes, Maria Elisa; Leemans, Dimitri; Weiss, Asia Ivić Highly symmetric hypertopes, Aequationes Math., Volume 90 (2016) no. 5, pp. 1045-1067 | DOI | MR | Zbl

[7] Fernandes, Maria Elisa; Leemans, Dimitri; Weiss, Asia Ivić An exploration of locally spherical regular hypertopes, Discrete Comput. Geom., Volume 64 (2020) no. 2, pp. 519-534 | DOI | MR | Zbl

[8] Hou, Dong-Dong; Feng, Yan-Quan; Leemans, Dimitri Existence of regular 3-hypertopes with 2 n chambers, Discrete Math., Volume 342 (2019) no. 6, pp. 1857-1863 | DOI | MR | Zbl

[9] Tits, Jacques Sur les analogues algébriques des groupes semi-simples complexes, Colloque d’algèbre supérieure, tenu à Bruxelles du 19 au 22 décembre 1956 (Centre Belge de Recherches Mathématiques), Établissements Ceuterick, Louvain; Librairie Gauthier-Villars, Paris, 1957, pp. 261-289 | MR | Zbl

Cited by Sources: