Let be a finite group, a complex permutation module for over a finite -set , and a -invariant positive semidefinite hermitian form on . In this paper we show how to compute the radical of , by extending to nontransitive actions the classical combinatorial methods from the theory of association schemes. We apply this machinery to obtain a result for standard Majorana representations of the symmetric groups.
Revised:
Accepted:
Published online:
DOI: 10.5802/alco.24
Keywords: Hermitian form, Symmetric group, Majorana representation, Monster group, Association scheme, Specht module.
@article{ALCO_2018__1_4_425_0, author = {Franchi, Clara and Ivanov, Alexander A. and Mainardis, Mario}, title = {Radicals of $S_n$-invariant positive semidefinite hermitian forms}, journal = {Algebraic Combinatorics}, pages = {425--440}, publisher = {MathOA foundation}, volume = {1}, number = {4}, year = {2018}, doi = {10.5802/alco.24}, mrnumber = {3875072}, zbl = {06963900}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/alco.24/} }
TY - JOUR AU - Franchi, Clara AU - Ivanov, Alexander A. AU - Mainardis, Mario TI - Radicals of $S_n$-invariant positive semidefinite hermitian forms JO - Algebraic Combinatorics PY - 2018 SP - 425 EP - 440 VL - 1 IS - 4 PB - MathOA foundation UR - http://archive.numdam.org/articles/10.5802/alco.24/ DO - 10.5802/alco.24 LA - en ID - ALCO_2018__1_4_425_0 ER -
%0 Journal Article %A Franchi, Clara %A Ivanov, Alexander A. %A Mainardis, Mario %T Radicals of $S_n$-invariant positive semidefinite hermitian forms %J Algebraic Combinatorics %D 2018 %P 425-440 %V 1 %N 4 %I MathOA foundation %U http://archive.numdam.org/articles/10.5802/alco.24/ %R 10.5802/alco.24 %G en %F ALCO_2018__1_4_425_0
Franchi, Clara; Ivanov, Alexander A.; Mainardis, Mario. Radicals of $S_n$-invariant positive semidefinite hermitian forms. Algebraic Combinatorics, Volume 1 (2018) no. 4, pp. 425-440. doi : 10.5802/alco.24. http://archive.numdam.org/articles/10.5802/alco.24/
[1] Algebraic combinatorics. I: Association schemes, Mathematics Lecture Note Series, The Benjamin/Cummings Publishing Company, 1984, xxiv+425 pages | Zbl
[2] The axes of a Majorana representation of , Groups of exceptional type, Coxeter groups and related geometries (Bangalore, 2012) (Springer Proceedings in Mathematics & Statistics), Volume 82, Springer, 2014, pp. 159-188 | DOI | MR | Zbl
[3] Standard Majorana representations of the symmetric groups, J. Algebr. Comb., Volume 44 (2016) no. 2, pp. 265-292 | DOI | MR | Zbl
[4] The 2A-Majorana representations of the Harada-Norton group, Ars Math. Contemp., Volume 11 (2016) no. 1, pp. 175-187 | DOI | MR | Zbl
[5] Coherent configurations. I: Ordinary representation theory, Geom. Dedicata, Volume 4 (1975), pp. 1-32 | DOI | MR | Zbl
[6] Character theory of finite groups, Dover Publications, 1994, xii+303 pages | MR | Zbl
[7] The Monster group and Majorana involutions, Cambridge Tracts in Mathematics, 176, Cambridge University Press, 2009, xiii+252 pages | MR | Zbl
[8] On Majorana representations of and , Commun. Math. Phys., Volume 307 (2011) no. 1, pp. 1-16 | DOI | Zbl
[9] Majorana representations of the symmetric group of degree 4, J. Algebra, Volume 324 (2010) no. 9, pp. 2432-2463 | DOI | MR | Zbl
[10] Majorana representations of , Math. Z., Volume 272 (2012) no. 1-2, pp. 269-295 | DOI | MR | Zbl
[11] The representation theory of the symmetric groups, 682, Springer, 1978 | MR | Zbl
[12] Algebra, Graduate Texts in Mathematics, 211, Springer, 2002, xv+914 pages | Zbl
[13] F and other simple groups, Ph. D. Thesis, University of Cambridge (UK) (1975)
[14] The Monster algebra: Some new formulae, Moonshine, the monster, and related topics. Joint summer research conference on moonshine, the monster, and related topics (Mount Holyoke College, 1994) (Contemporary Mathematics), Volume 193, American Mathematical Society, 1996, pp. 297-306 | MR | Zbl
[15] Linear representations of finite groups, Graduate Texts in Mathematics, 42, Springer, 1977, x+170 pages | MR | Zbl
Cited by Sources: