Let be a non-maximal order in a finite algebraic number field with integral closure . Although is not a unique factorization domain, we obtain a positive integer and a family (called a Cale basis) of primary irreducible elements of such that has a unique factorization into elements of for each coprime with the conductor of . Moreover, this property holds for each nonzero when the natural map is bijective. This last condition is actually equivalent to several properties linked to almost divisibility properties like inside factorial domains, almost Bézout domains, almost GCD domains.
@article{AMBP_2003__10_1_117_0, author = {Picavet-L{\textquoteright}Hermitte, Martine}, title = {Cale {Bases} in {Algebraic} {Orders}}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {117--131}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {10}, number = {1}, year = {2003}, doi = {10.5802/ambp.170}, zbl = {02068413}, mrnumber = {1990013}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/ambp.170/} }
TY - JOUR AU - Picavet-L’Hermitte, Martine TI - Cale Bases in Algebraic Orders JO - Annales mathématiques Blaise Pascal PY - 2003 SP - 117 EP - 131 VL - 10 IS - 1 PB - Annales mathématiques Blaise Pascal UR - http://archive.numdam.org/articles/10.5802/ambp.170/ DO - 10.5802/ambp.170 LA - en ID - AMBP_2003__10_1_117_0 ER -
Picavet-L’Hermitte, Martine. Cale Bases in Algebraic Orders. Annales mathématiques Blaise Pascal, Tome 10 (2003) no. 1, pp. 117-131. doi : 10.5802/ambp.170. http://archive.numdam.org/articles/10.5802/ambp.170/
[1] Almost Bézout domains II, J. Algebra, Volume 167 (1994), pp. 547-556 | DOI | MR | Zbl
[2] On primary factorizations, J. Pure Appl. Algebra, Volume 54 (1988), pp. 141-154 | DOI | MR | Zbl
[3] Almost Bézout domains, J. Algebra, Volume 142 (1991), pp. 285-309 | DOI | MR | Zbl
[4] Inside factorial monoids and integral domains, J. Algebra, Volume 252 (2002), pp. 350-375 | DOI | MR | Zbl
[5] Almost GCD domains of finite -character, J. Algebra, Volume 245 (2001), pp. 161-181 | DOI | MR | Zbl
[6] Fermat’s last Theorem, Springer GTM, Berlin, 1977 | MR | Zbl
[7] Interprétation factorielle du nombre de classes dans les ordres des corps quadratiques, Ann. Math. Blaise Pascal, Volume 7 (2) (2000), pp. 13-18 | DOI | EuDML | Numdam | MR | Zbl
[8] Non-unique factorizations in orders of global fields, J. Reine Angew. Math., Volume 459 (1995), pp. 89-118 | EuDML | MR | Zbl
[9] Factorization in some orders with a PID as integral closure, Algebraic Number Theory and Diophantine Analysis, de Gruyter, Berlin-NewYork, 2000, pp. 365-390 | MR | Zbl
[10] Weakly factorial quadratic orders, Arab. J. Sci. and Engineering, Volume 26 (2001), pp. 171-186 | MR
[11] A general theory of almost factoriality, Manuscripta Math., Volume 51 (1985), pp. 29-62 | DOI | MR | Zbl
[12] The class semigroup of orders in number fields, Math. Proc. Cambridge Philos. Soc., Volume 115 (1994), pp. 379-391 | DOI | MR | Zbl
Cité par Sources :