We prove endpoint estimates for operators given by oscillating spectral multipliers on Riemannian manifolds with
Mots-clés : spectral multipliers, wave equation, Riesz means
@article{AMBP_2003__10_1_133_0, author = {Marias, Michel}, title = {$L^{p}$-boundedness of oscillating spectral multipliers on {Riemannian} manifolds}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {133--160}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {10}, number = {1}, year = {2003}, doi = {10.5802/ambp.171}, zbl = {02068414}, mrnumber = {1990014}, language = {en}, url = {https://www.numdam.org/articles/10.5802/ambp.171/} }
TY - JOUR AU - Marias, Michel TI - $L^{p}$-boundedness of oscillating spectral multipliers on Riemannian manifolds JO - Annales mathématiques Blaise Pascal PY - 2003 SP - 133 EP - 160 VL - 10 IS - 1 PB - Annales mathématiques Blaise Pascal UR - https://www.numdam.org/articles/10.5802/ambp.171/ DO - 10.5802/ambp.171 LA - en ID - AMBP_2003__10_1_133_0 ER -
%0 Journal Article %A Marias, Michel %T $L^{p}$-boundedness of oscillating spectral multipliers on Riemannian manifolds %J Annales mathématiques Blaise Pascal %D 2003 %P 133-160 %V 10 %N 1 %I Annales mathématiques Blaise Pascal %U https://www.numdam.org/articles/10.5802/ambp.171/ %R 10.5802/ambp.171 %G en %F AMBP_2003__10_1_133_0
Marias, Michel. $L^{p}$-boundedness of oscillating spectral multipliers on Riemannian manifolds. Annales mathématiques Blaise Pascal, Tome 10 (2003) no. 1, pp. 133-160. doi : 10.5802/ambp.171. https://www.numdam.org/articles/10.5802/ambp.171/
[1] Oscillating multipliers on Lie groups and Riemannian manifolds, Tohoku Math. J. (2), Volume 46 (1994) no. 4, pp. 457-468 | DOI | MR | Zbl
[2] Riesz means on Lie groups and Riemannian manifolds of nonnegative curvature, Bull. Soc. Math. France, Volume 122 (1994) no. 2, pp. 209-223 | Numdam | MR | Zbl
[3] On the wave equation on a compact Riemannian manifold without conjugate points, Math. Z., Volume 155 (1977) no. 3, pp. 249-276 | DOI | MR | Zbl
[4] Riesz means of Riemannian manifolds, Geometry of the Laplace operator (Proc. Sympos. Pure Math., XXXVI), Amer. Math. Soc., Providence, R.I., 1980, pp. 1-12 | MR | Zbl
[5] Geometry of manifolds, Academic Press, New York, 1964 | MR | Zbl
[6] Gaussian estimates and
[7] Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Differential Geom., Volume 17 (1982) no. 1, pp. 15-53 | MR | Zbl
[8] Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc., Volume 83 (1977) no. 4, pp. 569-645 | DOI | MR | Zbl
[9]
[10] Inequalities for strongly singular convolution operators, Acta Math., Volume 124 (1970), pp. 9-36 | DOI | MR | Zbl
[11]
[12] Oscillating multipliers on noncompact symmetric spaces, J. Reine Angew. Math., Volume 409 (1990), pp. 93-105 | EuDML | MR | Zbl
[13] Les distributions, Dunod, Paris, 1962 | MR | Zbl
[14] On multiplier transformations, Duke Math. J, Volume 26 (1959), pp. 221-242 | DOI | MR | Zbl
[15] The analysis of linear partial differential operators, Vol. III, Springer-Verlag, Berlin, 1994 | MR | Zbl
[16] On the parabolic kernel of the Schrödinger operator, Acta Math., Volume 156 (1986) no. 3-4, pp. 153-201 | DOI | MR | Zbl
[17] Estimations des sommes de Riesz d’opérateurs de Schrödinger sur les variétés riemanniennes et les groupes de Lie, C. R. Acad. Sci. Paris Sér. I Math., Volume 315 (1992) no. 1, pp. 13-18 | MR | Zbl
[18] Estimées
[19]
[20] Vector-valued multipliers on stratified groups, Rev. Mat. Iberoamericana, Volume 6 (1990) no. 3-4, pp. 141-154 | DOI | EuDML | MR | Zbl
[21] Some singular integral transformations bounded in the Hardy space
[22] On some estimates for the wave equation in
[23] On some singular Fourier multipliers, J. Fac. Sci. Univ. Tokyo Sect. IA Math., Volume 28 (1981) no. 2, pp. 267-315 | MR | Zbl
[24] The Laplacian on a Riemannian manifold, Cambridge University Press, Cambridge, 1997 | MR | Zbl
[25] Spectral theory of elliptic operators on noncompact manifolds, Astérisque (1992) no. 207, pp. 35-108 | MR | Zbl
[26]
[27] On the Riesz means of the solutions of the Schrödinger equation, Ann. Scuola Norm. Sup. Pisa (3), Volume 24 (1970), pp. 331-348 | EuDML | Numdam | MR | Zbl
[28] Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, N.J., 1970 | MR | Zbl
[29]
[30] Analysis and geometry on groups, Cambridge University Press, Cambridge, 1992 | MR | Zbl
[31] Special trigonometric series in
- A Maximal Oscillatory Operator on Compact Manifolds, The Journal of Geometric Analysis, Volume 34 (2024) no. 6 | DOI:10.1007/s12220-024-01628-3
- Optimal Estimate of an Oscillatory Operator on Compact Manifolds, The Journal of Geometric Analysis, Volume 33 (2023) no. 6 | DOI:10.1007/s12220-023-01226-9
- Oscillating multipliers on symmetric and locally symmetric spaces, Canadian Journal of Mathematics, Volume 74 (2022) no. 3, p. 887 | DOI:10.4153/s0008414x21000250
- Maximal estimates for an oscillatory operator, Nonlinear Analysis, Volume 218 (2022), p. 112792 | DOI:10.1016/j.na.2022.112792
- Riesz means on homogeneous trees, Concrete Operators, Volume 8 (2021) no. 1, p. 60 | DOI:10.1515/conop-2020-0111
- The Rate of Convergence on Fractional Power Dissipative Operator on Compact Manifolds, Fractional Calculus and Applied Analysis, Volume 24 (2021) no. 4, p. 1130 | DOI:10.1515/fca-2021-0049
- Oscillating multipliers on rank one locally symmetric spaces, Journal of Mathematical Analysis and Applications, Volume 494 (2021) no. 1, p. 124561 | DOI:10.1016/j.jmaa.2020.124561
- Riesz means on symmetric spaces, Journal of Mathematical Analysis and Applications, Volume 499 (2021) no. 1, p. 124970 | DOI:10.1016/j.jmaa.2021.124970
- Riesz Means on Graphs and Discrete Groups, Potential Analysis, Volume 38 (2013) no. 1, p. 21 | DOI:10.1007/s11118-011-9261-x
- An oscillating multiplier on Herz type spaces, Applied Mathematics-A Journal of Chinese Universities, Volume 26 (2011) no. 1, p. 93 | DOI:10.1007/s11766-011-2425-z
- Hp-bounds for spectral multipliers on Riemannian manifolds, Bulletin des Sciences Mathématiques, Volume 134 (2010) no. 7, p. 750 | DOI:10.1016/j.bulsci.2010.01.001
- 𝐻^𝑝-bounds for spectral multipliers on graphs, Transactions of the American Mathematical Society, Volume 361 (2008) no. 2, p. 1053 | DOI:10.1090/s0002-9947-08-04596-0
Cité par 12 documents. Sources : Crossref