In this paper, we establish an one-to-one mapping between complex-valued functions defined on and complex-valued functions defined on -adic number field , and introduce the definition and method of Weyl-Heisenberg frame on hormonic analysis to -adic anylysis.
@article{AMBP_2005__12_1_195_0, author = {Cui, Minggen and Lv, Xueqin}, title = {Weyl-Heisenberg frame in $p$-adic analysis}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {195--203}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {12}, number = {1}, year = {2005}, doi = {10.5802/ambp.202}, zbl = {02215257}, mrnumber = {2126448}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/ambp.202/} }
TY - JOUR AU - Cui, Minggen AU - Lv, Xueqin TI - Weyl-Heisenberg frame in $p$-adic analysis JO - Annales mathématiques Blaise Pascal PY - 2005 SP - 195 EP - 203 VL - 12 IS - 1 PB - Annales mathématiques Blaise Pascal UR - http://archive.numdam.org/articles/10.5802/ambp.202/ DO - 10.5802/ambp.202 LA - en ID - AMBP_2005__12_1_195_0 ER -
%0 Journal Article %A Cui, Minggen %A Lv, Xueqin %T Weyl-Heisenberg frame in $p$-adic analysis %J Annales mathématiques Blaise Pascal %D 2005 %P 195-203 %V 12 %N 1 %I Annales mathématiques Blaise Pascal %U http://archive.numdam.org/articles/10.5802/ambp.202/ %R 10.5802/ambp.202 %G en %F AMBP_2005__12_1_195_0
Cui, Minggen; Lv, Xueqin. Weyl-Heisenberg frame in $p$-adic analysis. Annales mathématiques Blaise Pascal, Tome 12 (2005) no. 1, pp. 195-203. doi : 10.5802/ambp.202. http://archive.numdam.org/articles/10.5802/ambp.202/
[1] On the wavelet transform in the field of p-adic Numbers, Applied and Computational Hormonic Analysis, Volume 13 (2002), pp. 162-168 | DOI | MR | Zbl
[2] The Heisenberg Uncertainty Relation In Harmonic Analysis On p-adic Numbers Field (Dans ce fascicule des Annales Mathématiques Blaise Pascal) | Numdam | Zbl
[3] The Affine Frame In -adic Analysis, Annales Mathématiques Blaise Pascal, Volume 10 (2003), pp. 297-303 (math.66) | DOI | Numdam | MR | Zbl
[4] Wavelet theory as p-adic spectral analysis, Izv.Russ.Akad.Nauk,Ser, Volume 2 (2002), pp. 149-158 | MR | Zbl
[5] -adic Analysis and Mathematical Physics, World Scientific, 1994 | MR | Zbl
Cité par Sources :