Un lemme de Kazhdan-Margulis-Zassenhaus pour les géométries de Hilbert
Annales mathématiques Blaise Pascal, Tome 20 (2013) no. 2, pp. 363-376.

On montre un lemme de Kazhdan-Margulis-Zassenhaus pour les géométries de Hilbert. Plus précisément, en toute dimension n, il existe une constante ε n >0 telle que, pour tout ouvert proprement convexe Ω, pour tout point xΩ, tout groupe discret engendré par un nombre fini d’automorphismes de Ω qui déplacent le point x de moins de ε n est virtuellement nilpotent.

We prove a Kazhdan-Margulis-Zassenhaus lemma for Hilbert geometries. More precisely, in every dimension n there exists a constant ε n >0 such that, for any properly convex open set Ω and any point xΩ, any discrete group generated by a finite number of automorphisms of Ω, which displace x at a distance less than ε n , is virtually nilpotent.

DOI : 10.5802/ambp.330
Classification : 22E40, 22F50, 57M99
Mot clés : Géométrie de Hilbert, lemme de Margulis, action géométriquement finie
Keywords: Hilbert’s geometry, lemma of Margulis, action geometrically finite
Crampon, Mickaël 1 ; Marquis, Ludovic 2

1 Universidad de Santiago de Chile, Departamento de Matemática y Ciencia de la Computación, Av. Las Sophoras 173 - Estación Central, Santiago de Chile Chile
2 IRMAR 263 Av. du Général Leclerc CS 74205 35042 Rennes Cedex France
@article{AMBP_2013__20_2_363_0,
     author = {Crampon, Micka\"el and Marquis, Ludovic},
     title = {Un lemme de {Kazhdan-Margulis-Zassenhaus} pour les g\'eom\'etries de {Hilbert}},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {363--376},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {20},
     number = {2},
     year = {2013},
     doi = {10.5802/ambp.330},
     zbl = {1282.22007},
     mrnumber = {3138033},
     language = {fr},
     url = {http://archive.numdam.org/articles/10.5802/ambp.330/}
}
TY  - JOUR
AU  - Crampon, Mickaël
AU  - Marquis, Ludovic
TI  - Un lemme de Kazhdan-Margulis-Zassenhaus pour les géométries de Hilbert
JO  - Annales mathématiques Blaise Pascal
PY  - 2013
SP  - 363
EP  - 376
VL  - 20
IS  - 2
PB  - Annales mathématiques Blaise Pascal
UR  - http://archive.numdam.org/articles/10.5802/ambp.330/
DO  - 10.5802/ambp.330
LA  - fr
ID  - AMBP_2013__20_2_363_0
ER  - 
%0 Journal Article
%A Crampon, Mickaël
%A Marquis, Ludovic
%T Un lemme de Kazhdan-Margulis-Zassenhaus pour les géométries de Hilbert
%J Annales mathématiques Blaise Pascal
%D 2013
%P 363-376
%V 20
%N 2
%I Annales mathématiques Blaise Pascal
%U http://archive.numdam.org/articles/10.5802/ambp.330/
%R 10.5802/ambp.330
%G fr
%F AMBP_2013__20_2_363_0
Crampon, Mickaël; Marquis, Ludovic. Un lemme de Kazhdan-Margulis-Zassenhaus pour les géométries de Hilbert. Annales mathématiques Blaise Pascal, Tome 20 (2013) no. 2, pp. 363-376. doi : 10.5802/ambp.330. http://archive.numdam.org/articles/10.5802/ambp.330/

[1] Ballmann, Werner; Gromov, Mikhael; Schroeder, Viktor Manifolds of nonpositive curvature, Progress in Mathematics, 61, Birkhäuser Boston Inc., Boston, MA, 1985 | MR | Zbl

[2] Benoist, Yves Automorphismes des cônes convexes, Invent. Math., Volume 141 (2000) no. 1, pp. 149-193 | DOI | MR | Zbl

[3] Benoist, Yves Convexes divisibles. II, Duke Math. J., Volume 120 (2003) no. 1, pp. 97-120 | DOI | MR | Zbl

[4] Benoist, Yves Convexes divisibles. I, Algebraic groups and arithmetic, Tata Inst. Fund. Res., Mumbai, 2004, pp. 339-374 | MR | Zbl

[5] Benoist, Yves Convexes divisibles. III, Ann. Sci. École Norm. Sup. (4), Volume 38 (2005) no. 5, pp. 793-832 | Numdam | MR | Zbl

[6] Benoist, Yves Convexes divisibles. IV. Structure du bord en dimension 3, Invent. Math., Volume 164 (2006) no. 2, pp. 249-278 | DOI | MR | Zbl

[7] Benoist, Yves Convexes hyperboliques et quasiisométries, Geom. Dedicata, Volume 122 (2006), pp. 109-134 | DOI | MR | Zbl

[8] Benzécri, Jean-Paul Sur les variétés localement affines et localement projectives, Bull. Soc. Math. France, Volume 88 (1960), pp. 229-332 | Numdam | MR | Zbl

[9] Bosché, A. Symmetric cones, the Hilbert and Thompson metrics, ArXiv e-prints (2012)

[10] Breuillard, E.; Green, B.; Tao, T. The structure of approximate groups, ArXiv e-prints (2011)

[11] Busemann, Herbert The geometry of geodesics, Academic Press Inc., New York, N. Y., 1955 | MR | Zbl

[12] Choi, Suhyoung Convex decompositions of real projective surfaces. I. π-annuli and convexity, J. Differential Geom., Volume 40 (1994) no. 1, pp. 165-208 http://projecteuclid.org/getRecord?id=euclid.jdg/1214455291 | MR | Zbl

[13] Choi, Suhyoung Convex decompositions of real projective surfaces. II. Admissible decompositions, J. Differential Geom., Volume 40 (1994) no. 2, pp. 239-283 http://projecteuclid.org/getRecord?id=euclid.jdg/1214455537 | MR | Zbl

[14] Choi, Suhyoung The Margulis lemma and the thick and thin decomposition for convex real projective surfaces, Adv. Math., Volume 122 (1996) no. 1, pp. 150-191 | DOI | MR | Zbl

[15] Choi, Suhyoung The deformation spaces of projective structures on 3-dimensional Coxeter orbifolds, Geom. Dedicata, Volume 119 (2006), pp. 69-90 | DOI | MR | Zbl

[16] Choi, Suhyoung The convex real projective manifolds and orbifolds with radial ends : the openness of deformations, ArXiv e-prints (2010)

[17] Choi, Suhyoung; Goldman, William Convex real projective structures on closed surfaces are closed, Proc. Amer. Math. Soc., Volume 118 (1993) no. 2, pp. 657-661 | DOI | MR | Zbl

[18] Choi, Suhyoung; Goldman, William The classification of real projective structures on compact surfaces, Bull. Amer. Math. Soc. (N.S.), Volume 34 (1997) no. 2, pp. 161-171 | DOI | MR | Zbl

[19] Colbois, Bruno; Vernicos, Constantin Bas du spectre et delta-hyperbolicité en géométrie de Hilbert plane, Bull. Soc. Math. France, Volume 134 (2006) no. 3, pp. 357-381 | Numdam | MR | Zbl

[20] Cooper, D.; Long, D.; Tillmann, S. On Convex Projective Manifolds and Cusps, ArXiv e-prints (2011)

[21] Crampon, M.; Marquis, L. Finitude géométrique en géométrie de Hilbert, ArXiv e-prints (2012)

[22] Goldman, William Convex real projective structures on compact surfaces, J. Differential Geom., Volume 31 (1990) no. 3, pp. 791-845 http://projecteuclid.org/getRecord?id=euclid.jdg/1214444635 | MR | Zbl

[23] Goldman, William Projective geometry on manifolds (2010) (Notes from a course given in 1988)

[24] Gromov, M. Asymptotic invariants of infinite groups, Geometric group theory, Vol. 2 (Sussex, 1991) (London Math. Soc. Lecture Note Ser.), Volume 182, Cambridge Univ. Press, Cambridge, 1993, pp. 1-295 | MR

[25] de la Harpe, Pierre On Hilbert’s metric for simplices, Geometric group theory, Vol. 1 (Sussex, 1991) (London Math. Soc. Lecture Note Ser.), Volume 181, Cambridge Univ. Press, Cambridge, 1993, pp. 97-119 | DOI | MR | Zbl

[26] Johnson, Dennis; Millson, John J. Deformation spaces associated to compact hyperbolic manifolds, Discrete groups in geometry and analysis (New Haven, Conn., 1984) (Progr. Math.), Volume 67, Birkhäuser Boston, Boston, MA, 1987, pp. 48-106 | MR | Zbl

[27] Kac, Victor; Vinberg, Èrnest Quasi-homogeneous cones, Mat. Zametki, Volume 1 (1967), pp. 347-354 | MR | Zbl

[28] Kapovich, Michael Convex projective structures on Gromov-Thurston manifolds, Geom. Topol., Volume 11 (2007), pp. 1777-1830 | DOI | MR | Zbl

[29] Každan, D. A.; Margulis, G. A. A proof of Selberg’s hypothesis, Mat. Sb. (N.S.), Volume 75 (117) (1968), pp. 163-168 | MR | Zbl

[30] Lemmens, Bas; Walsh, Cormac Isometries of polyhedral Hilbert geometries, J. Topol. Anal., Volume 3 (2011) no. 2, pp. 213-241 | DOI | MR | Zbl

[31] Margulis, G. A. Discrete groups of motions of manifolds of nonpositive curvature, Proceedings of the International Congress of Mathematicians (Vancouver, B.C., 1974), Vol. 2, Canad. Math. Congress, Montreal, Que. (1975), pp. 21-34 | MR | Zbl

[32] Marquis, Ludovic Espace des modules marqués des surfaces projectives convexes de volume fini, Geom. Topol., Volume 14 (2010) no. 4, pp. 2103-2149 | DOI | MR | Zbl

[33] Marquis, Ludovic Exemples de variétés projectives strictement convexes de volume fini en dimension quelconque, Enseign. Math. (2), Volume 58 (2012), pp. 3-47 | DOI | MR

[34] Marquis, Ludovic Finite volume convex projective surface. (Surface projective convexe de volume fini.), Ann. Inst. Fourier, Volume 62 (2012) no. 1, pp. 325-392 | DOI | Numdam | MR | Zbl

[35] Milman, V. D.; Pajor, A. Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space, Geometric aspects of functional analysis (1987–88) (Lecture Notes in Math.), Volume 1376, Springer, Berlin, 1989, pp. 64-104 | DOI | MR | Zbl

[36] Raghunathan, M. S. Discrete subgroups of Lie groups, Springer-Verlag, New York, 1972 (Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68) | MR | Zbl

[37] Vernicos, Constantin Introduction aux géométries de Hilbert, Actes de Séminaire de Théorie Spectrale et Géométrie. Vol. 23. Année 2004–2005 (Sémin. Théor. Spectr. Géom.), Volume 23, Univ. Grenoble I, Saint, 2005, pp. 145-168 | Numdam | MR | Zbl

[38] Vey, Jacques Sur les automorphismes affines des ouverts convexes saillants, Ann. Scuola Norm. Sup. Pisa (3), Volume 24 (1970), pp. 641-665 | Numdam | MR | Zbl

[39] Zassenhaus, Hans Beweis eines Satzes über diskrete Gruppen., Abh. math. Sem. Hansische Univ., Volume 12 (1938), pp. 289-312 | DOI | Zbl

Cité par Sources :