Numerical Analysis
Geometry of martensite needles in shape memory alloys
Comptes Rendus. Mathématique, Volume 358 (2020) no. 9-10, pp. 1047-1057.

We study the geometry of needle-shaped domains in shape-memory alloys. Needle-shaped domains are ubiquitously found in martensites around macroscopic interfaces between regions which are laminated in different directions, or close to macroscopic austenite/twinned-martensite interfaces. Their geometry results from the interplay of the local nonconvexity of the effective energy density with long-range (linear) interactions mediated by the elastic strain field, and is up to now poorly understood. We present a two-dimensional shape optimization model based on finite elasticity and discuss its numerical solution. Our results indicate that the tapering profile of the needles can be understood within finite elasticity, but not with linearized elasticity. The resulting tapering and bending reproduce the main features of experimental observations on Ni 65 Al 35 .

Nous étudions la géométrie des domaines en forme d’aiguille dans les alliages à mémoire de forme. Les domaines en forme d’aiguille sont omniprésents dans les martensites près des interfaces macroscopiques entre régions laminées dans des directions différentes, ou près d’interfaces macroscopiques entre austénite et martensites jumelées. Leur géométrie résulte de l’influence relative de la non-convexité locale de la densité d’énergie effective et des interactions à longue portée (linéaires) engendrées par le champ de déformation élastique, et est pour le moment assez mal comprise. Nous présentons un modèle d’optimisation de forme bi-dimensionnel basé sur l’élasticité non-linéaire et étudions son approximation numérique. Nos résultats montrent que le profil effilé des aiguilles peut être expliqué dans le cadre de l’élasticité non-linéaire, mais pas dans le cadre linéarisé. L’amincissement et la flexion qui en résultent reproduisent les caractéristiques principales observées expérimentalement sur le Ni 65 Al 35 .

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.120
Conti, Sergio 1; Lenz, Martin 2; Lüthen, Nora 3; Rumpf, Martin 1, 2; Zwicknagl, Barbara 4

1 Institute for Applied Mathematics, University of Bonn, Endenicher Allee 60, 53115 Bonn, Germany
2 Institute for Numerical Simulation, University of Bonn, Endenicher Allee 60, 53115 Bonn, Germany
3 Chair of Risk, Safety and Uncertainty Quantification, ETH Zürich, Stefano-Franscini-Platz 5, 8093 Zürich, Switzerland
4 Humboldt-Universität zu Berlin, Departement of Mathematics, Unter den Linden 6, 10099 Berlin, Germany
@article{CRMATH_2020__358_9-10_1047_0,
     author = {Conti, Sergio and Lenz, Martin and L\"uthen, Nora and Rumpf, Martin and Zwicknagl, Barbara},
     title = {Geometry of martensite needles in shape memory alloys},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1047--1057},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {9-10},
     year = {2020},
     doi = {10.5802/crmath.120},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/crmath.120/}
}
TY  - JOUR
AU  - Conti, Sergio
AU  - Lenz, Martin
AU  - Lüthen, Nora
AU  - Rumpf, Martin
AU  - Zwicknagl, Barbara
TI  - Geometry of martensite needles in shape memory alloys
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 1047
EP  - 1057
VL  - 358
IS  - 9-10
PB  - Académie des sciences, Paris
UR  - http://archive.numdam.org/articles/10.5802/crmath.120/
DO  - 10.5802/crmath.120
LA  - en
ID  - CRMATH_2020__358_9-10_1047_0
ER  - 
%0 Journal Article
%A Conti, Sergio
%A Lenz, Martin
%A Lüthen, Nora
%A Rumpf, Martin
%A Zwicknagl, Barbara
%T Geometry of martensite needles in shape memory alloys
%J Comptes Rendus. Mathématique
%D 2020
%P 1047-1057
%V 358
%N 9-10
%I Académie des sciences, Paris
%U http://archive.numdam.org/articles/10.5802/crmath.120/
%R 10.5802/crmath.120
%G en
%F CRMATH_2020__358_9-10_1047_0
Conti, Sergio; Lenz, Martin; Lüthen, Nora; Rumpf, Martin; Zwicknagl, Barbara. Geometry of martensite needles in shape memory alloys. Comptes Rendus. Mathématique, Volume 358 (2020) no. 9-10, pp. 1047-1057. doi : 10.5802/crmath.120. http://archive.numdam.org/articles/10.5802/crmath.120/

[1] Ball, J. M.; James, R. D. Fine phase mixtures as minimizers of the energy, Arch. Ration. Mech. Analysis, Volume 100 (1987), pp. 13-52 | DOI | MR | Zbl

[2] Bhattacharya, Kaushik Microstructure of martensite: Why it forms and how it gives rise to the shape-memory effect, Oxford Series in Materials Modelling, 2, Oxford University Press, 2003 | Zbl

[3] Boullay, Ph.; Schryvers, D.; Ball, J. M. Nano-structures at martensite macrotwin interfaces in Ni 65 Al 35 , Acta Materialia, Volume 51 (2003) no. 5, pp. 1421-1436 | DOI

[4] Boullay, Ph.; Schryvers, D.; Kohn, R. V. Bending martensite needles in Ni 65 Al 35 investigated by two-dimensional elasticity and high-resolution transmission electron microscopy, Phys. Rev. B, Volume 64 (2001), 144105 | DOI

[5] Bronstein, Emil; Faran, Eilon; Shilo, Doron Analysis of austenite-martensite phase boundary and twinned microstructure in shape memory alloys: The role of twinning disconnections, Acta Materialia, Volume 164 (2019), pp. 520-529 | DOI

[6] Conti, Sergio Branched microstructures: scaling and asymptotic self-similarity, Commun. Pure Appl. Math., Volume 53 (2000) no. 11, pp. 1448-1474 | DOI | MR | Zbl

[7] Conti, Sergio; Zwicknagl, Barbara Low volume-fraction microstructures in martensites and crystal plasticity, Math. Models Methods App. Sci., Volume 26 (2016), pp. 1319-1355 | DOI | MR | Zbl

[8] Dondl, Patrick; Heeren, Behrend; Rumpf, Martin Optimization of the branching pattern in coherent phase transitions, C. R. Math. Acad. Sci. Paris, Volume 354 (2016) no. 6, pp. 639-644 | DOI | MR | Zbl

[9] Finel, Alphonse; Le Bouar, Y.; Gaubert, A.; Salman, U. Phase field methods: Microstructures, mechanical properties and complexity, C. R. Physique, Volume 11 (2010), pp. 245-256 | DOI

[10] Huang, Xiangyang; Naumov, Ivan I.; Rabe, Karin M. Phonon anomalies and elastic constants of cubic NiAl from first principles, Phys. Rev. B, Volume 70 (2004), p. 064301 | DOI

[11] Kambouchev, Nayden; Fernandez, Javier; Radovitzky, Raul A polyconvex model for materials with cubic symmetry, Modelling and Simulation in Materials Science and Engineering, Volume 15 (2007) no. 5, pp. 451-467 | DOI

[12] Configurational mechanics of materials (Kienzler, Reinhold; Maugin, Gérard A., eds.), CISM Courses and Lectures, 427, Springer, 2001 | Zbl

[13] Kohn, Robert V.; Müller, Stefan Surface energy and microstructure in coherent phase transitions, Commun. Pure Appl. Math., Volume 47 (1994), pp. 405-435 | DOI | MR | Zbl

[14] Levitas, Valery I.; Roy, Arunabha M.; Preston, Dean L. Multiple twinning and variant-variant transformations in martensite: Phase-field approach, Phys. Rev. B, Volume 88 (2013), p. 054113 | DOI

[15] Li, Bo; Luskin, Mitchell Theory and computation for the microstructure near the interface between twinned layers and a pure variant of martensite, Materials Science and Engineering. Ser. A, Volume 273-275 (1999), pp. 237-240 | DOI

[16] Muite, B. K.; Salman, O. U. Computations of geometrically linear and nonlinear Ginzburg–Landau models for martensitic pattern formation, ESOMAT (2009), 03008 | DOI

[17] Novak, J.; Bismayer, U.; Salje, E. K. H. Simulated equilibrium shapes of ferroelastic needle domains, Journal of Physics: Condensed Matter, Volume 14 (2002) no. 3, pp. 657-664 | DOI

[18] Salje, E K H Phase transitions in ferroelastic and co-elastic crystals, Cambridge University Press, 1990

[19] Salje, E. K. H.; Ishibashi, Y. Mesoscopic structures in ferroelastic crystals: needle twins and right-angled domains, Journal of Physics: Condensed Matter, Volume 8 (1996) no. 44, pp. 8477-8495 | DOI

[20] Salman, O. Umut; Muite, Benson; Finel, Alphonse Origin of stabilization of macrotwin boundaries in martensites, The European Physical Journal B, Volume 92 (2019) no. 1, p. 20 | DOI | MR

[21] Seiner, Hanuš; Glatz, Ondřej; Landa, Michal A finite element analysis of the morphology of the twinned-to-detwinned interface observed in microstructure of the Cu–Al–Ni shape memory alloy, International Journal of Solids and Structures, Volume 48 (2011) no. 13, pp. 2005-2014 | DOI

[22] Zhang, Zhiyong; James, Richard D. A way to search for multiferroic materials with unlikely combinations of physical properties, Magnetism and structure in functional materials (Springer Series in Materials Science), Volume 79, Springer (2005)

[23] Zhang, Zhiyong; James, Richard D.; Müller, Stefan Energy barriers and hysteresis in martensitic phase transformations, Acta Materialia, Volume 57 (2009), pp. 4332-4352 | DOI

[24] Zwicknagl, Barbara Microstructures in low-hysteresis shape memory alloys: scaling regimes and optimal needle shapes, Arch. Ration. Mech. Anal., Volume 213 (2014) no. 2, pp. 355-421 | DOI | MR | Zbl

Cited by Sources: