Nous caractérisons les polynômes binaires unitairement parfaits, connus jusqu’ici, apparemment de façon « empirique » . La méthode que nous avons trouvée a permis et permettrait d’en découvrir d’autres.
We characterize all the known unitary perfect binary polynomials by precising their admissible families. Our method allows us to find other ones.
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2021__359_2_123_0, author = {Rahavandrainy, Olivier}, title = {Familles de polyn\^omes unitairement parfaits sur $\protect \mathbb{F}_2$}, journal = {Comptes Rendus. Math\'ematique}, pages = {123--130}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {2}, year = {2021}, doi = {10.5802/crmath.149}, language = {fr}, url = {https://www.numdam.org/articles/10.5802/crmath.149/} }
TY - JOUR AU - Rahavandrainy, Olivier TI - Familles de polynômes unitairement parfaits sur $\protect \mathbb{F}_2$ JO - Comptes Rendus. Mathématique PY - 2021 SP - 123 EP - 130 VL - 359 IS - 2 PB - Académie des sciences, Paris UR - https://www.numdam.org/articles/10.5802/crmath.149/ DO - 10.5802/crmath.149 LA - fr ID - CRMATH_2021__359_2_123_0 ER -
%0 Journal Article %A Rahavandrainy, Olivier %T Familles de polynômes unitairement parfaits sur $\protect \mathbb{F}_2$ %J Comptes Rendus. Mathématique %D 2021 %P 123-130 %V 359 %N 2 %I Académie des sciences, Paris %U https://www.numdam.org/articles/10.5802/crmath.149/ %R 10.5802/crmath.149 %G fr %F CRMATH_2021__359_2_123_0
Rahavandrainy, Olivier. Familles de polynômes unitairement parfaits sur $\protect \mathbb{F}_2$. Comptes Rendus. Mathématique, Tome 359 (2021) no. 2, pp. 123-130. doi : 10.5802/crmath.149. https://www.numdam.org/articles/10.5802/crmath.149/
[1] Unitary perfect polynomials over
[2] Infinitely many perfect and unitary perfect polynomials, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat., Volume 63 (1977) no. 5, pp. 294-303 | MR | Zbl
[3] The sum of the divisors of a polynomial, Duke Math. J., Volume 8 (1941), pp. 721-737 | DOI | MR | Zbl
[4] Odd perfect polynomials over
[5] Even perfect polynomials over
[6] There is no odd perfect polynomial over
[7] On even (unitary) perfect polynomials over
[8] Characterization of Sporadic perfect polynomials over
[9] On Mersenne polynomials over
[10] On odd prime divisors of binary perfect polynomials (2020) (https://arxiv.org/abs/2007.16016)
Cité par Sources :