Monge-Ampère Equations, Geodesics and Geometric Invariant Theory
Journées équations aux dérivées partielles (2005), article no. 10, 15 p.

Existence and uniqueness theorems for weak solutions of a complex Monge-Ampère equation are established, extending the Bedford-Taylor pluripotential theory. As a consequence, using the Tian-Yau-Zelditch theorem, it is shown that geodesics in the space of Kähler potentials can be approximated by geodesics in the spaces of Bergman metrics. Motivation from Donaldson’s program on constant scalar curvature metrics and Yau’s strategy of approximating Kähler metrics by Bergman metrics is also discussed.

DOI: 10.5802/jedp.22
Phong, D.H. 1; Sturm, Jacob 2

1 Department of Mathematics Columbia University, New York, NY 10027
2 Department of Mathematics Rutgers University, Newark, NJ 07102
@article{JEDP_2005____A10_0,
     author = {Phong, D.H. and Sturm, Jacob},
     title = {Monge-Amp\`ere {Equations,} {Geodesics} and {Geometric} {Invariant} {Theory}},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     eid = {10},
     publisher = {Groupement de recherche 2434 du CNRS},
     year = {2005},
     doi = {10.5802/jedp.22},
     mrnumber = {2352778},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/jedp.22/}
}
TY  - JOUR
AU  - Phong, D.H.
AU  - Sturm, Jacob
TI  - Monge-Ampère Equations, Geodesics and Geometric Invariant Theory
JO  - Journées équations aux dérivées partielles
PY  - 2005
DA  - 2005///
PB  - Groupement de recherche 2434 du CNRS
UR  - http://archive.numdam.org/articles/10.5802/jedp.22/
UR  - https://www.ams.org/mathscinet-getitem?mr=2352778
UR  - https://doi.org/10.5802/jedp.22
DO  - 10.5802/jedp.22
LA  - en
ID  - JEDP_2005____A10_0
ER  - 
%0 Journal Article
%A Phong, D.H.
%A Sturm, Jacob
%T Monge-Ampère Equations, Geodesics and Geometric Invariant Theory
%J Journées équations aux dérivées partielles
%D 2005
%I Groupement de recherche 2434 du CNRS
%U https://doi.org/10.5802/jedp.22
%R 10.5802/jedp.22
%G en
%F JEDP_2005____A10_0
Phong, D.H.; Sturm, Jacob. Monge-Ampère Equations, Geodesics and Geometric Invariant Theory. Journées équations aux dérivées partielles (2005), article  no. 10, 15 p. doi : 10.5802/jedp.22. http://archive.numdam.org/articles/10.5802/jedp.22/

[1] Bedford, E. and B.A. Taylor, “The Dirichlet problem for a complex Monge-Ampère equation”, Inventiones Math. 37 (1976) 1-44. | EuDML | MR | Zbl

[2] Bedford, E. and B.A. Taylor, “A new capacity theory for plurisubharmonic functions”, Acta Math. 149 (1982) 1-40. | MR | Zbl

[3] Blocki, Z., “The complex Monge-Ampère operator and pluripotential theory”, lecture notes available from the author’s website.

[4] Boutet de Monvel, L. and J. Sjöstrand, “Sur la singularité des noyaux de Bergman et de Szegö” Journées: Equations aux Dérivées Partielles de Rennes (1975), 123-164. Asterisque, No. 34-35, Soc. Math. France, Paris, 1976. | EuDML | Numdam | MR | Zbl

[5] Caffarelli, L., L. Nirenberg, and J. Spruck, “The Dirichlet problem for nonlinear second-order elliptic equations. I. Monge-Ampère equation”. Comm. Pure Appl. Math. 37 (1984), no. 3, 369–402. | MR | Zbl

[6] Caffarelli, L., L. Nirenberg, L., J.J. Kohn, and J. Spruck, “The Dirichlet problem for nonlinear second-order elliptic equations. II. Complex Monge-Ampère, and uniformly elliptic, equationsv”. Comm. Pure Appl. Math. 38 (1985), no. 2, 209–252. | MR | Zbl

[7] Caffarelli, L., L. Nirenberg, and J. Spruck, “The Dirichlet problem for the degenerate Monge-Ampère equation”, Rev. Mat. Iberoamericana 2 (1986), no. 1-2, 19–27. | EuDML | MR | Zbl

[8] Catlin, D., “The Bergman kernel and a theorem of Tian”, Analysis and geometry in several complex variables (Katata, 1997), 1-23, Trends Math., Birkhäuser Boston, Boston, MA, 1999. | MR | Zbl

[9] Chen, X.X., “The space of Kähler metrics”, J. Differential Geom. 56 (2000), 189-234. | MR | Zbl

[10] Chen, X.X. and G. Tian, “Geometry of Kähler metrics and foliations by discs”, arXiv: math.DG / 0409433.

[11] Demailly, J.P., “Complex analytic and algebraic geometry”, book available from the author’s website.

[12] Donaldson, S.K., “Symmetric spaces, Kähler geometry, and Hamiltonian dynamics”, Amer. Math. Soc. Transl. 196 (1999) 13-33. | MR | Zbl

[13] Donaldson, S.K., “Scalar curvature and projective imbeddings II”, arXiv: math.DG / 0407534.

[14] Donaldson, S.K., “Scalar curvature and projective embeddings. I”, J. Diff. Geometry 59 (2001) 479-522. | MR | Zbl

[15] Donaldson, S.K., “Scalar curvature and stability of toric varieties”, J. Diff. Geometry 62 (2002) 289-349. | MR | Zbl

[16] Fefferman, C., “The Bergman kernel and biholomorphic mappings of pseudoconvex domains”, Invent. Math. 26 (1974), 1–65. | MR | Zbl

[17] Guan, B., “The Dirichlet problem for complex Monge-Ampère equations and regularity of the pluri-complex Green function”, Comm. Anal. Geom. 6 (1998), no. 4, 687–703. | MR | Zbl

[18] Guedj, V. and A. Zeriahi, “Intrinsic capacities on compact Kähler manifolds”, arXiv: math.CV / 0401302.

[19] Lu, Z., “On the lower order terms of the asymptotic expansion of Tian-Yau-Zelditch”, Amer. J. Math. 122 (2000) 235-273. | MR | Zbl

[20] Mabuchi, T., “Some symplectic geometry on compact Kähler manifolds”, Osaka J. Math. 24 (1987) 227-252. | MR | Zbl

[21] Mumford, D., J. Fogarty, and F. Kirwan, “Geometric invariant theory” Ergebnisse der Mathematik und ihrer Grenzgebiete (2) 34. Springer-Verlag, Berlin, 1994. | MR | Zbl

[22] Paul, S., “Geometric analysis of Chow Mumford stability”, Adv. Math. 182 (2004), no. 2, 333–356. | MR | Zbl

[23] Paul, S. and G. Tian, “Algebraic and analytic stability”, arXiv: math.DG/0405530.

[24] Phong, D.H. and J. Sturm, “Stability, energy functionals, and Kähler-Einstein metrics”, Comm. Anal. Geometry 11 (2003) 563-597, arXiv: math.DG / 0203254. | MR | Zbl

[25] Phong, D.H. and J. Sturm, “The complex Monge-Ampère operator and geodesics in the space of Kähler metrics”, arXiv: math.DG/0504157.

[26] Phong, D.H. and J. Sturm, “On stability and the convergence of the Kähler-Ricci flow”, arXiv: math.DG / 0412185. | MR | Zbl

[27] Semmes, S., “Complex Monge-Ampère and symplectic manifolds”, Amer. J. Math. 114 (1992) 495-550. | MR | Zbl

[28] Tian, G., “ On a set of polarized Kähler metrics on algebraic manifolds”, J. Diff. Geom. 32 (1990) 99-130. | MR | Zbl

[29] Tian, G., “Kähler-Einstein metrics with positive scalar curvature”, Inventiones Math. 130 (1997) 1-37. | MR | Zbl

[30] Yau, S.T., “On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampere equation I”, Comm. Pure Appl. Math. 31 (1978) 339-411. | MR | Zbl

[31] Yau, S.T., “ Nonlinear analysis in geometry”, Enseign. Math. (2) 33 (1987), no. 1-2, 109–158. | MR | Zbl

[32] Yau, S.T., “Open problems in geometry”, Proc. Symp. Pure Math. 54 (1993) 1-28. | MR | Zbl

[33] Zelditch, S., “The Szegö kernel and a theorem of Tian”, Int. Math. Res. Notices 6 (1998) 317-331. | MR | Zbl

[34] Zhang, S., “Heights and reductions of semi-stable varieties”, Compositio Math. 104 (1996) 77-105. | Numdam | MR | Zbl

Cited by Sources: