On -harmonic functions
Journées équations aux dérivées partielles (2007), article no. 2, 11 p.
DOI: 10.5802/jedp.41
De Pauw, Thierry 1

1 Université catholique de Louvain Département de mathématiques Chemin du cyclotron, 2 B-1348 Louvain-la-Neuve Belgique
@incollection{JEDP_2007____A2_0,
     author = {De~Pauw, Thierry},
     title = {On $\infty $-harmonic functions},
     booktitle = {},
     series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     eid = {2},
     pages = {1--11},
     publisher = {Groupement de recherche 2434 du CNRS},
     year = {2007},
     doi = {10.5802/jedp.41},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/jedp.41/}
}
TY  - JOUR
AU  - De Pauw, Thierry
TI  - On $\infty $-harmonic functions
JO  - Journées équations aux dérivées partielles
PY  - 2007
SP  - 1
EP  - 11
PB  - Groupement de recherche 2434 du CNRS
UR  - http://archive.numdam.org/articles/10.5802/jedp.41/
DO  - 10.5802/jedp.41
LA  - en
ID  - JEDP_2007____A2_0
ER  - 
%0 Journal Article
%A De Pauw, Thierry
%T On $\infty $-harmonic functions
%J Journées équations aux dérivées partielles
%D 2007
%P 1-11
%I Groupement de recherche 2434 du CNRS
%U http://archive.numdam.org/articles/10.5802/jedp.41/
%R 10.5802/jedp.41
%G en
%F JEDP_2007____A2_0
De Pauw, Thierry. On $\infty $-harmonic functions. Journées équations aux dérivées partielles (2007), article  no. 2, 11 p. doi : 10.5802/jedp.41. http://archive.numdam.org/articles/10.5802/jedp.41/

[1] Aronsson, G.; Crandall, M.G.; Juutinen, P. A tour of the theory of absolutely minimizing functions, Bull. Amer. Math. Soc., Volume 41 (2004) no. 4, pp. 439-505 | MR | Zbl

[2] Crandall, M.G.; Evans, L.C. A remark on infinity harmonic functions, Electron. J. Diff. Eqns., Volume Conf. 06 (2001), pp. 123-129 | MR | Zbl

[3] Crandall, M.G.; Ishii, H.; Lions, P.L. User’s guide to viscosity solutions of second-order partial differential equations, Bull. Amer. Math. Soc., Volume 27 (1992), pp. 1-67 | MR | Zbl

[4] D’Onofrio, L.; Giannetti, F.; Iwaniec, T.; Manfredi, J.; Radice, T. Divergence forms of the infinity-laplacian, Publ. Mat., Volume 50 (2006) no. 1, pp. 229-248 | MR

[5] Evans, L.C. Estimates for smooth absolutely minimizing Lipschitz extensions, Electron. J. Diff. Eqns., Volume 1993 (1993) no. 3, pp. 1-9 | MR | Zbl

[6] Evans, L.C.; Yu, Y. Various properties of solutions of the infinity-laplacian equation, Comm. Partial Differential Equations, Volume 30 (2005) no. 9, pp. 1401-1428 | MR | Zbl

[7] Federer, H. Geometric Measure Theory, Die grundlehren der mathematischen wissenschaften, 153, Springer-Verlag, New York, 1969 | MR | Zbl

[8] Savin, O. C 1 regularity for infinity-harmonic functions in two dimensions, Arch. Ration. Mech. Anal., Volume 176 (2005), pp. 351-361 | MR | Zbl

[9] Yu, Y. A remark on C 2 infinity-harmonic functions, Electron. J. Diff. Eqns., Volume 2006 (2006) no. 122, pp. 1-4 | Zbl

Cited by Sources: