@incollection{JEDP_2007____A2_0, author = {De~Pauw, Thierry}, title = {On $\infty $-harmonic functions}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {2}, pages = {1--11}, publisher = {Groupement de recherche 2434 du CNRS}, year = {2007}, doi = {10.5802/jedp.41}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jedp.41/} }
De Pauw, Thierry. On $\infty $-harmonic functions. Journées équations aux dérivées partielles (2007), article no. 2, 11 p. doi : 10.5802/jedp.41. http://archive.numdam.org/articles/10.5802/jedp.41/
[1] A tour of the theory of absolutely minimizing functions, Bull. Amer. Math. Soc., Volume 41 (2004) no. 4, pp. 439-505 | MR | Zbl
[2] A remark on infinity harmonic functions, Electron. J. Diff. Eqns., Volume Conf. 06 (2001), pp. 123-129 | MR | Zbl
[3] User’s guide to viscosity solutions of second-order partial differential equations, Bull. Amer. Math. Soc., Volume 27 (1992), pp. 1-67 | MR | Zbl
[4] Divergence forms of the infinity-laplacian, Publ. Mat., Volume 50 (2006) no. 1, pp. 229-248 | MR
[5] Estimates for smooth absolutely minimizing Lipschitz extensions, Electron. J. Diff. Eqns., Volume 1993 (1993) no. 3, pp. 1-9 | MR | Zbl
[6] Various properties of solutions of the infinity-laplacian equation, Comm. Partial Differential Equations, Volume 30 (2005) no. 9, pp. 1401-1428 | MR | Zbl
[7] Geometric Measure Theory, Die grundlehren der mathematischen wissenschaften, 153, Springer-Verlag, New York, 1969 | MR | Zbl
[8] regularity for infinity-harmonic functions in two dimensions, Arch. Ration. Mech. Anal., Volume 176 (2005), pp. 351-361 | MR | Zbl
[9] A remark on infinity-harmonic functions, Electron. J. Diff. Eqns., Volume 2006 (2006) no. 122, pp. 1-4 | Zbl
Cited by Sources: