Profile decompositions and applications to Navier-Stokes
Journées équations aux dérivées partielles (2010), article no. 12, 13 p.

In this expository note, we collect some recent results concerning the applications of methods from dispersive and hyperbolic equations to the study of regularity criteria for the Navier-Stokes equations. In particular, these methods have recently been used to give an alternative approach to the L 3, Navier-Stokes regularity criterion of Escauriaza, Seregin and Šverák. The key tools are profile decompositions for bounded sequences of functions in critical spaces.

DOI: 10.5802/jedp.69
Koch, Gabriel S. 1

1 Department of Mathematics University of Oxford Oxford, UK
@article{JEDP_2010____A12_0,
     author = {Koch, Gabriel S.},
     title = {Profile decompositions and applications to {Navier-Stokes}},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     eid = {12},
     pages = {1--13},
     publisher = {Groupement de recherche 2434 du CNRS},
     year = {2010},
     doi = {10.5802/jedp.69},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/jedp.69/}
}
TY  - JOUR
AU  - Koch, Gabriel S.
TI  - Profile decompositions and applications to Navier-Stokes
JO  - Journées équations aux dérivées partielles
PY  - 2010
SP  - 1
EP  - 13
PB  - Groupement de recherche 2434 du CNRS
UR  - http://archive.numdam.org/articles/10.5802/jedp.69/
DO  - 10.5802/jedp.69
LA  - en
ID  - JEDP_2010____A12_0
ER  - 
%0 Journal Article
%A Koch, Gabriel S.
%T Profile decompositions and applications to Navier-Stokes
%J Journées équations aux dérivées partielles
%D 2010
%P 1-13
%I Groupement de recherche 2434 du CNRS
%U http://archive.numdam.org/articles/10.5802/jedp.69/
%R 10.5802/jedp.69
%G en
%F JEDP_2010____A12_0
Koch, Gabriel S. Profile decompositions and applications to Navier-Stokes. Journées équations aux dérivées partielles (2010), article  no. 12, 13 p. doi : 10.5802/jedp.69. http://archive.numdam.org/articles/10.5802/jedp.69/

[1] Hajer Bahouri, Albert Cohen, and Gabriel Koch. A general construction method for profile decompositions. in progress.

[2] Hajer Bahouri and Patrick Gérard. High frequency approximation of solutions to critical nonlinear wave equations. Amer. J. Math., 121(1):131–175, 1999. | MR | Zbl

[3] H. Brezis and J.-M. Coron. Convergence of solutions of H-systems or how to blow bubbles. Arch. Rational Mech. Anal., 89(1):21–56, 1985. | MR | Zbl

[4] L. Caffarelli, R. Kohn, and L. Nirenberg. Partial regularity of suitable weak solutions of the Navier-Stokes equations. Comm. Pure Appl. Math., 35(6):771–831, 1982. | MR | Zbl

[5] L. Escauriaza, G. A. Seregin, and V. Šverák. L 3, -solutions of Navier-Stokes equations and backward uniqueness. Uspekhi Mat. Nauk, 58(2(350)):3–44, 2003. | MR | Zbl

[6] Isabelle Gallagher. Profile decomposition for solutions of the Navier-Stokes equations. Bull. Soc. Math. France, 129(2):285–316, 2001. | Numdam | MR | Zbl

[7] Isabelle Gallagher, Dragoş Iftimie, and Fabrice Planchon. Non-explosion en temps grand et stabilité de solutions globales des équations de Navier-Stokes. C. R. Math. Acad. Sci. Paris, 334(4):289–292, 2002. | MR | Zbl

[8] Isabelle Gallagher, Dragoş Iftimie, and Fabrice Planchon. Asymptotics and stability for global solutions to the Navier-Stokes equations. Ann. Inst. Fourier (Grenoble), 53(5):1387–1424, 2003. | Numdam | MR | Zbl

[9] Isabelle Gallagher, Gabriel Koch, and Fabrice Planchon. A profile decomposition approach to the L t (L x 3 ) Navier-Stokes regularity criterion. arXiv:1012.0145.

[10] Patrick Gérard. Description du défaut de compacité de l’injection de Sobolev. ESAIM Control Optim. Calc. Var., 3:213–233 (electronic), 1998. | EuDML | Numdam | MR | Zbl

[11] Stéphane Jaffard. Analysis of the lack of compactness in the critical Sobolev embeddings. J. Funct. Anal., 161(2):384–396, 1999. | MR | Zbl

[12] Carlos Kenig and Gabriel Koch. An alternative approach to the Navier-Stokes equations in critical spaces. to appear in Annales de l’Institut Henri Poincaré (C) Analyse Non Linéaire (preprint: arXiv:0908.3349).

[13] Carlos E. Kenig and Frank Merle. Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case. Invent. Math., 166(3):645–675, 2006. | MR | Zbl

[14] Carlos E. Kenig and Frank Merle. Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation. Acta Math., 201(2):147–212, 2008. | MR | Zbl

[15] Carlos E. Kenig and Frank Merle. Scattering for H 1/2 bounded solutions to the cubic, defocusing NLS in 3 dimensions. Trans. Amer. Math. Soc., 362(4):1937–1962, 2010. | MR | Zbl

[16] Sahbi Keraani. On the blow up phenomenon of the critical nonlinear Schrödinger equation. J. Funct. Anal., 235(1):171–192, 2006. | MR | Zbl

[17] Gabriel Koch. Profile decompositions for critical Lebesgue and Besov space embeddings. arXiv:1006.3064.

[18] O. A. Ladyženskaja. Uniqueness and smoothness of generalized solutions of Navier-Stokes equations. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 5:169–185, 1967. | EuDML | MR | Zbl

[19] J. Leray. Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math., 63:193–248, 1934. | MR

[20] P.-L. Lions. The concentration-compactness principle in the calculus of variations. The limit case. I. Rev. Mat. Iberoamericana, 1(1):145–201, 1985. | EuDML | MR | Zbl

[21] J. Nečas, M. Růžička, and V. Šverák. On Leray’s self-similar solutions of the Navier-Stokes equations. Acta Math., 176(2):283–294, 1996. | Zbl

[22] Giovanni Prodi. Un teorema di unicità per le equazioni di Navier-Stokes. Ann. Mat. Pura Appl. (4), 48:173–182, 1959. | MR | Zbl

[23] James Serrin. The initial value problem for the Navier-Stokes equations. In Nonlinear Problems (Proc. Sympos., Madison, Wis, pages 69–98. Univ. of Wisconsin Press, Madison, Wis., 1963. | MR | Zbl

[24] Sergio Solimini. A note on compactness-type properties with respect to Lorentz norms of bounded subsets of a Sobolev space. Ann. Inst. H. Poincaré Anal. Non Linéaire, 12(3):319–337, 1995. | EuDML | Numdam | MR | Zbl

[25] V. Šverák and W. Rusin. Minimal initial data for potential Navier-Stokes singularities. arXiv:0911.0500, 2009.

Cited by Sources: