Conjugacy class of homeomorphisms and distortion elements in groups of homeomorphisms
[Classes de conjugaison d’homéomorphismes et éléments de distorsion dans les groupes d’homéomorphismes]
Journal de l’École polytechnique — Mathématiques, Tome 5 (2018), pp. 565-604.

Soit S une surface compacte connexe et soit f un élément du groupe Homeo 0 (S) des homéomorphismes de S isotopes à l’identité. Notons f ˜ un relevé de f au revêtement universel de S. Fixons un domaine fondamental D de ce revêtement universel. On dit que l’homéomorphisme f est non-diffus si la suite (d n /n) converge vers 0, où d n désigne le diamètre de f ˜ n (D). Supposons que la surface S est orientable de bord non vide. Nous démontrons que, si S est distincte du disque et de l’anneau, un homéomorphisme est non-diffus si et seulement si il a des conjugués dans Homeo 0 (S) arbitrairement proches de l’identité. Dans le cas où la surface S est l’anneau, nous démontrons qu’un homéomorphisme est non-diffus si et seulement si il a des conjugués arbitrairement proches d’une rotation (ce résultat était déjà connu dans la plupart des cas grâce à un théorème dû à Béguin, Crovisier, Le Roux et Patou). On en déduit que, pour de telles surfaces S, un élément de Homeo 0 (S) est distordu si et seulement si il est non diffus.

Let S be a compact connected surface and let f be an element of the group Homeo 0 (S) of homeomorphisms of S isotopic to the identity. Denote by f ˜ a lift of f to the universal cover of S. Fix a fundamental domain D of this universal cover. The homeomorphism f is said to be non-spreading if the sequence (d n /n) converges to 0, where d n is the diameter of f ˜ n (D). Let us suppose now that the surface S is orientable with a nonempty boundary. We prove that, if S is different from the annulus and from the disc, a homeomorphism is non-spreading if and only if it has conjugates in Homeo 0 (S) arbitrarily close to the identity. In the case where the surface S is the annulus, we prove that a homeomorphism is non-spreading if and only if it has conjugates in Homeo 0 (S) arbitrarily close to a rotation (this was already known in most cases by a theorem by Béguin, Crovisier, Le Roux and Patou). We deduce that, for such surfaces S, an element of Homeo 0 (S) is distorted if and only if it is non-spreading.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.78
Classification : 54H20, 54H15, 37C85
Keywords: Topological dynamics, homeomorphism, distortion, conjugacy class
Mot clés : Dynamique topologique, homéomorphisme, distorsion, classe de conjugaison
Militon, Emmanuel 1

1 Laboratoire J.A. Dieudonné. UMR n° 7351 CNRS UNS Université Nice Sophia Antipolis Université Côte d’Azur 06108 Nice Cedex 02 France
@article{JEP_2018__5__565_0,
     author = {Militon, Emmanuel},
     title = {Conjugacy class of homeomorphisms and distortion elements in groups~of~homeomorphisms},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {565--604},
     publisher = {Ecole polytechnique},
     volume = {5},
     year = {2018},
     doi = {10.5802/jep.78},
     mrnumber = {3852261},
     zbl = {06988588},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/jep.78/}
}
TY  - JOUR
AU  - Militon, Emmanuel
TI  - Conjugacy class of homeomorphisms and distortion elements in groups of homeomorphisms
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2018
SP  - 565
EP  - 604
VL  - 5
PB  - Ecole polytechnique
UR  - http://archive.numdam.org/articles/10.5802/jep.78/
DO  - 10.5802/jep.78
LA  - en
ID  - JEP_2018__5__565_0
ER  - 
%0 Journal Article
%A Militon, Emmanuel
%T Conjugacy class of homeomorphisms and distortion elements in groups of homeomorphisms
%J Journal de l’École polytechnique — Mathématiques
%D 2018
%P 565-604
%V 5
%I Ecole polytechnique
%U http://archive.numdam.org/articles/10.5802/jep.78/
%R 10.5802/jep.78
%G en
%F JEP_2018__5__565_0
Militon, Emmanuel. Conjugacy class of homeomorphisms and distortion elements in groups of homeomorphisms. Journal de l’École polytechnique — Mathématiques, Tome 5 (2018), pp. 565-604. doi : 10.5802/jep.78. http://archive.numdam.org/articles/10.5802/jep.78/

[1] Béguin, F.; Crovisier, S.; Le Roux, F.; Patou, A. Pseudo-rotations of the closed annulus: variation on a theorem of J. Kwapisz, Nonlinearity, Volume 17 (2004) no. 4, pp. 1427-1453 | DOI | MR | Zbl

[2] Bounemoura, A. Simplicité des groupes de transformations de surfaces, Ensaios Matemáticos, 14, Sociedade Brasileira de Matemática, Rio de Janeiro, 2008 | MR | Zbl

[3] Calegari, Da.; Freedman, M. H. Distortion in transformation groups, Geom. Topol., Volume 10 (2006), pp. 267-293 (with an appendix by Yves de Cornulier) | DOI | MR

[4] Epstein, D. B. A. Curves on 2-manifolds and isotopies, Acta Math., Volume 115 (1966), pp. 83-107 | DOI | MR | Zbl

[5] Farb, B.; Margalit, D. A primer on mapping class groups, Princeton Mathematical Series, 49, Princeton University Press, Princeton, NJ, 2012 | MR

[6] Fisher, G. M. On the group of all homeomorphisms of a manifold, Trans. Amer. Math. Soc., Volume 97 (1960), pp. 193-212 | DOI | MR | Zbl

[7] Franks, J.; Handel, M. Distortion elements in group actions on surfaces, Duke Math. J., Volume 131 (2006) no. 3, pp. 441-468 | DOI | MR | Zbl

[8] Hamstrom, M.-E. Homotopy groups of the space of homeomorphisms on a 2-manifold, Illinois J. Math., Volume 10 (1966), pp. 563-573 | MR

[9] de la Harpe, P. Topics in geometric group theory, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 2000 | Zbl

[10] Katok, A.; Hasselblatt, B. Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications, 54, Cambridge University Press, Cambridge, 1995 (with a supplementary chapter by Katok and Leonardo Mendoza) | MR | Zbl

[11] Kwapisz, J. Combinatorics of torus diffeomorphisms, Ergodic Theory Dynam. Systems, Volume 23 (2003) no. 2, pp. 559-586 | DOI | MR | Zbl

[12] Le Calvez, P.; Yoccoz, J.-C. Un théorème d’indice pour les homéomorphismes du plan au voisinage d’un point fixe, Ann. of Math. (2), Volume 146 (1997) no. 2, pp. 241-293 | DOI | Zbl

[13] Militon, E. Distortion elements for surface homeomorphisms, Geom. Topol., Volume 18 (2014) no. 1, pp. 521-614 | DOI | MR | Zbl

[14] Misiurewicz, M.; Ziemian, K. Rotation sets for maps of tori, J. London Math. Soc. (2), Volume 40 (1989) no. 3, pp. 490-506 | DOI | MR

[15] Polterovich, L. Growth of maps, distortion in groups and symplectic geometry, Invent. Math., Volume 150 (2002) no. 3, pp. 655-686 | DOI | MR | Zbl

Cité par Sources :