Let be a totally real field which is a finite abelian extension over and is unramified at 3,5, and 7. We prove that any elliptic curve over is modular, by reducing modularity of to known modularity lifting theorems.
Soit un corps totalement réel qui est une extension abélienne finie de non ramifiée en et . Nous prouvons que toute courbe elliptique sur est modulaire, en réduisant la question de modularité de aux théorèmes de relèvement modulaire connus.
Accepted:
Published online:
DOI: 10.5802/jtnb.1047
Keywords: elliptic curves, Hilbert modular forms, Galois representations
@article{JTNB_2018__30_3_729_0, author = {Yoshikawa, Sho}, title = {Modularity of elliptic curves over abelian totally real fields unramified at 3, 5, and 7}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {729--741}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {30}, number = {3}, year = {2018}, doi = {10.5802/jtnb.1047}, mrnumber = {3938624}, zbl = {1441.11135}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jtnb.1047/} }
TY - JOUR AU - Yoshikawa, Sho TI - Modularity of elliptic curves over abelian totally real fields unramified at 3, 5, and 7 JO - Journal de théorie des nombres de Bordeaux PY - 2018 SP - 729 EP - 741 VL - 30 IS - 3 PB - Société Arithmétique de Bordeaux UR - http://archive.numdam.org/articles/10.5802/jtnb.1047/ DO - 10.5802/jtnb.1047 LA - en ID - JTNB_2018__30_3_729_0 ER -
%0 Journal Article %A Yoshikawa, Sho %T Modularity of elliptic curves over abelian totally real fields unramified at 3, 5, and 7 %J Journal de théorie des nombres de Bordeaux %D 2018 %P 729-741 %V 30 %N 3 %I Société Arithmétique de Bordeaux %U http://archive.numdam.org/articles/10.5802/jtnb.1047/ %R 10.5802/jtnb.1047 %G en %F JTNB_2018__30_3_729_0
Yoshikawa, Sho. Modularity of elliptic curves over abelian totally real fields unramified at 3, 5, and 7. Journal de théorie des nombres de Bordeaux, Volume 30 (2018) no. 3, pp. 729-741. doi : 10.5802/jtnb.1047. http://archive.numdam.org/articles/10.5802/jtnb.1047/
[1] Modularity of nearly ordinary 2-adic residually dihedral Galois representations, Compos. Math., Volume 150 (2014) no. 8, pp. 1235-1346 | DOI | MR | Zbl
[2] On the modularity of elliptic curves over : wild 3-adic exercises, J. Am. Math. Soc., Volume 14 (2001), pp. 843-939 | DOI | MR | Zbl
[3] Potential modularity - a survey (2010) (https://arxiv.org/abs/1101.0097) | Zbl
[4] Recipes to Fermat-type equations of the form , Math. Z., Volume 279 (2015) no. 3-4, pp. 605-639 | DOI | MR | Zbl
[5] Elliptic Curves over Real Quadratic Fields are Modular, Invent. Math., Volume 201 (2015) no. 1, pp. 159-206 | DOI | MR | Zbl
[6] Remarks on automorphy of residually dihedral representations (2016) (https://arxiv.org/abs/1607.04750) | Zbl
[7] Détermination du poids et du conducteur associés aux représentations des points de -torsion d’une courbe elliptique, Dissertationes Mathematicae, 364, Instytut Matematyczny Polskiej Akademi Nauk, 1997 | MR | Zbl
[8] Modularity of some elliptic curves over totally real fields (2013) (https://arxiv.org/abs/1309.4134)
[9] On the parity of ranks of Selmer groups. IV, Compos. Math., Volume 145 (2009) no. 6, pp. 1351-1359 | DOI | MR | Zbl
[10] Good Reduction of Abelian Varieties, Ann. Math., Volume 88 (1968) no. 3, pp. 492-517 | DOI | MR | Zbl
[11] The Arithmetic of Elliptic Curves, Graduate Texts in Mathematics, 106, Springer, 1986, xii+400 pages | MR | Zbl
[12] Nearly ordinary deformation of residually dihedral representations (preprint)
[13] Residually reducible representations and modular forms, Publ. Math., Inst. Hautes Étud. Sci., Volume 89 (1999), pp. 5-126 | Zbl
[14] Nearly ordinary deformations of irreducible residual representations, Ann. Fac. Sci. Toulouse, Math., Volume 10 (2001) no. 1, pp. 185-215 | DOI | Numdam | MR | Zbl
[15] Remarks on a conjecture of Fontaine and Mazur, J. Inst. Math. Jussieu, Volume 1 (2002) no. 1, pp. 125-143 | MR | Zbl
[16] Ring-theoretic properties of certain Hecke algebras, Ann. Math., Volume 141 (1995) no. 3, pp. 553-572 | DOI | MR | Zbl
[17] Automorphy of some residually dihedral Galois representations, Math. Ann., Volume 364 (2016) no. 1-2, pp. 589-648 | DOI | MR | Zbl
[18] Modular elliptic curves and Fermat’s Last Theorem, Ann. Math., Volume 141 (1995) no. 3, pp. 443-551 | DOI | MR | Zbl
Cited by Sources: