Let be a prime number. In the present paper, we study the pro- outer Galois action associated to a modular curve of level a power of . In particular, we discuss the issue of whether or not the pro- outer Galois action factors through a pro- quotient of the absolute Galois group of a certain number field. Moreover, as an application, we also obtain a result concerning the relationship between the Jacobian varieties of modular curves of prime power level and a set defined by Rasmussen and Tamagawa.
Soit un nombre premier. Dans cet article, nous étudions la pro- action galoisienne extérieure associée à une courbe modulaire de niveau une puissance de . En particulier, nous discutons de la question de savoir si cette action se factorise à travers d’un pro- quotient du groupe de Galois absolu d’un certain corps de nombres. Comme application, nous établissons aussi une relation entre les variétés Jacobiennes de courbes modulaires de niveau puissance d’un nombre premier et l’ensemble défini par Rasmussen et Tamagawa.
Revised:
Accepted:
Published online:
DOI: 10.5802/jtnb.1049
Keywords: modular curve, pro-$l$ outer Galois action
@article{JTNB_2018__30_3_781_0, author = {Hoshi, Yuichiro and Iijima, Yu}, title = {The pro-$l$ outer {Galois} actions associated to modular curves of prime power level}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {781--799}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {30}, number = {3}, year = {2018}, doi = {10.5802/jtnb.1049}, mrnumber = {3938626}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jtnb.1049/} }
TY - JOUR AU - Hoshi, Yuichiro AU - Iijima, Yu TI - The pro-$l$ outer Galois actions associated to modular curves of prime power level JO - Journal de théorie des nombres de Bordeaux PY - 2018 SP - 781 EP - 799 VL - 30 IS - 3 PB - Société Arithmétique de Bordeaux UR - http://archive.numdam.org/articles/10.5802/jtnb.1049/ DO - 10.5802/jtnb.1049 LA - en ID - JTNB_2018__30_3_781_0 ER -
%0 Journal Article %A Hoshi, Yuichiro %A Iijima, Yu %T The pro-$l$ outer Galois actions associated to modular curves of prime power level %J Journal de théorie des nombres de Bordeaux %D 2018 %P 781-799 %V 30 %N 3 %I Société Arithmétique de Bordeaux %U http://archive.numdam.org/articles/10.5802/jtnb.1049/ %R 10.5802/jtnb.1049 %G en %F JTNB_2018__30_3_781_0
Hoshi, Yuichiro; Iijima, Yu. The pro-$l$ outer Galois actions associated to modular curves of prime power level. Journal de théorie des nombres de Bordeaux, Volume 30 (2018) no. 3, pp. 781-799. doi : 10.5802/jtnb.1049. http://archive.numdam.org/articles/10.5802/jtnb.1049/
[1] Pro- branched coverings of and higher circular -units, Ann. Math., Volume 128 (1988), pp. 271-293 | DOI | MR | Zbl
[2] Exactness properties of profinite completion functors, Topology, Volume 13 (1974), pp. 229-239 | DOI | MR | Zbl
[3] A first course in modular forms, Graduate Texts in Mathematics, 228, Springer, 2005, xv+436 pages | MR | Zbl
[4] On monodromically full points of configuration spaces of hyperbolic curves, The Arithmetic of Fundamental Groups - PIA 2010 (Contributions in Mathematical and Computational Sciences), Volume 2, Springer, 2010, pp. 167-207 | MR | Zbl
[5] On the kernels of the pro- outer Galois representations associated to hyperbolic curves over number fields, Osaka J. Math., Volume 52 (2015) no. 3, pp. 647-675 | MR | Zbl
[6] A pro- version of the congruence subgroup problem for mapping class groups of genus one, J. Algebra, Volume 520 (2019), pp. 1-31 | DOI | MR | Zbl
[7] Some arithmetic aspects of Galois actions in the pro- fundamental group of , Arithmetic fundamental groups and noncommutative algebra (Berkeley, CA, 1999) (Proceedings of Symposia in Pure Mathematics), Volume 70, American Mathematical Society, 2002, pp. 247-273 | DOI | MR | Zbl
[8] -adic properties of modular schemes and modular forms, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) (Lecture Notes in Mathematics), Volume 350, Springer, 1973, pp. 69-190 | MR | Zbl
[9] Arithmetic moduli of elliptic curves, Annals of Mathematics Studies, 108, Princeton University Press, 1985, xiv+514 pages | MR | Zbl
[10] Modular curves and the Eisenstein ideal, Publ. Math., Inst. Hautes Étud. Sci., Volume 47 (1977), pp. 33-186 | DOI | Numdam | Zbl
[11] The algebraic and anabelian geometry of configuration spaces, Hokkaido Math. J., Volume 37 (2008) no. 1, pp. 75-131 | MR | Zbl
[12] On the torsion of Jacobians of principal modular curves of level , Arch. Math., Volume 88 (2007) no. 1, pp. 19-28 | DOI | MR | Zbl
[13] On the Jacobian of the Klein curve, Proc. Am. Math. Soc., Volume 122 (1994) no. 4, pp. 971-978 | DOI | MR | Zbl
[14] A finiteness conjecture on abelian varieties with constrained prime power torsion, Math. Res. Lett., Volume 15 (2008) no. 6, pp. 1223-1231 | DOI | MR | Zbl
[15] The Modular Forms Database (http://wstein.org/Tables)
Cited by Sources: