On the class numbers of the fields of the pn-torsion points of elliptic curves over
Journal de théorie des nombres de Bordeaux, Tome 30 (2018) no. 3, pp. 893-915.

Soit E une courbe elliptique sur ayant réduction multiplicative en un nombre premier p. Supposons que en tout nombre premier différent de p la courbe E a une réduction multiplicative ou potentiellement bonne. Pour chaque entier positif n on pose Kn:=(E[pn]). Le but de cet article est d’étendre nos résultats précédents [13] concernant l’ordre du p-sous-groupe de Sylow du groupe des classes d’idéaux de Kn à un cadre plus général. Nous modifions également la borne inférieure précédente de cet ordre donnée en termes du rang de Mordell–Weil de E() et de la ramification liée à E.

Let E be an elliptic curve over which has multiplicative reduction at a fixed prime p. Assume E has multiplicative reduction or potentially good reduction at any prime not equal to p. For each positive integer n we put Kn:=(E[pn]). The aim of this paper is to extend the authors’ previous results in [13] concerning with the order of the p-Sylow group of the ideal class group of Kn to more general setting. We also modify the previous lower bound of the order given in terms of the Mordell–Weil rank of E() and the ramification related to E.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1056
Classification : 11G05, 11G07
Mots-clés : elliptic curves, Mordell–Weil rank, class number
Sairaiji, Fumio 1 ; Yamauchi, Takuya 2

1 Faculty of Nursing, Hiroshima International University, Hiro, Hiroshima 737-0112, Japan
2 Mathematical Institute, Tohoku University 6-3, Aoba, Aramaki, Aoba-Ku, Sendai 980-8578, Japan
@article{JTNB_2018__30_3_893_0,
     author = {Sairaiji, Fumio and Yamauchi, Takuya},
     title = {On the class numbers of the fields of the $p^n$-torsion points of elliptic curves over $\protect \mathbb{Q}$},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {893--915},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {30},
     number = {3},
     year = {2018},
     doi = {10.5802/jtnb.1056},
     zbl = {1443.11101},
     mrnumber = {3938633},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/jtnb.1056/}
}
TY  - JOUR
AU  - Sairaiji, Fumio
AU  - Yamauchi, Takuya
TI  - On the class numbers of the fields of the $p^n$-torsion points of elliptic curves over $\protect \mathbb{Q}$
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2018
SP  - 893
EP  - 915
VL  - 30
IS  - 3
PB  - Société Arithmétique de Bordeaux
UR  - https://www.numdam.org/articles/10.5802/jtnb.1056/
DO  - 10.5802/jtnb.1056
LA  - en
ID  - JTNB_2018__30_3_893_0
ER  - 
%0 Journal Article
%A Sairaiji, Fumio
%A Yamauchi, Takuya
%T On the class numbers of the fields of the $p^n$-torsion points of elliptic curves over $\protect \mathbb{Q}$
%J Journal de théorie des nombres de Bordeaux
%D 2018
%P 893-915
%V 30
%N 3
%I Société Arithmétique de Bordeaux
%U https://www.numdam.org/articles/10.5802/jtnb.1056/
%R 10.5802/jtnb.1056
%G en
%F JTNB_2018__30_3_893_0
Sairaiji, Fumio; Yamauchi, Takuya. On the class numbers of the fields of the $p^n$-torsion points of elliptic curves over $\protect \mathbb{Q}$. Journal de théorie des nombres de Bordeaux, Tome 30 (2018) no. 3, pp. 893-915. doi : 10.5802/jtnb.1056. https://www.numdam.org/articles/10.5802/jtnb.1056/

[1] Bashmakov, M. I. The cohomology of abelian varieties over a number field, Usp. Mat. Nauk, Volume 27 (1972) no. 6, pp. 25-66 translation in Russ. Math. Surv. 17 (1972), no. 1, p. 25-70 | MR | Zbl

[2] Bosch, Siegfried; Lütkebohmert, Werner; Raynaud, Michel Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 21, Springer, 1990 | Zbl

[3] Dokchitser, Tim; Dokchitser, Vladimir Surjectivity of mod 2n representations of elliptic curves, Math. Z., Volume 272 (2012) no. 3-4, pp. 961-964 | DOI | MR | Zbl

[4] Elkies, Noam Elliptic curves with 3-adic Galois representation surjective mod 3 but not mod 9 (2006) (preprint)

[5] Fukuda, Takashi; Komatsu, Keiichi; Yamagata, Shuji Iwasawa λ-invariants and Mordell–Weil ranks of abelian varieties with complex multiplication, Acta Arith., Volume 127 (2007) no. 4, pp. 305-307 | DOI | MR | Zbl

[6] Greenberg, Ralph Iwasawa theory past and present, Class field theory its centenary and prospect (Tokyo, 1998) (Advanced Studies in Pure Mathematics), Volume 30, Mathematical Society of Japan, 2001, pp. 335-385 | DOI | MR | Zbl

[7] Grothendieck, Alexander Modèles de Néron et monodromie, Seminaire de géométrie algébrique Du Bois-Marie 1967-1969 (SGA 7) (Lecture Notes in Mathematics), Volume 288, Springer, 1972, pp. 313-523 | Zbl

[8] Hiranouchi, Toshiro Class numbers associated to elliptic curves over with good reduction at p (2016) (preprint)

[9] Jones, John W.; Roberts, David P. Database of Local Fields (available at https://math.la.asu.edu/~jj/localfields/)

[10] Lang, Serge Elliptic curves: Diophantine analysis, Grundlehren der Mathematischen Wissenschaften, 231, Springer, 1978 | MR | Zbl

[11] Lawson, Tyler; Wuthrich, Christian Vanishing of some Galois cohomology groups for elliptic curves, Elliptic curves, modular forms and Iwasawa theory (Springer Proceedings in Mathematics & Statistics), Volume 188, Springer, 2016, pp. 373-399 | DOI | MR | Zbl

[12] Mestre, Jean-François; Oesterlé, Joseph Courbes de Weil semi-stables de discriminant une puissance m-iéme, J. Reine Angew. Math., Volume 400 (1989), pp. 173-184 | Zbl

[13] Sairaiji, Fumio; Yamauchi, Takuya On the class numbers of the fields of the pn-torsion points of certain elliptic curves over , J. Number Theory, Volume 156 (2015), pp. 277-289 | DOI | MR | Zbl

[14] Serre, Jean-Pierre Proprietes galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math., Volume 15 (1972) no. 4, pp. 259-331 | DOI | MR | Zbl

[15] Silverman, Joseph H. The arithmetic of elliptic curves, Graduate Texts in Mathematics, 106, Springer, 1986 | MR | Zbl

[16] The LMFDB Collaboration Elliptic Curves over Number Fields (http://www.lmfdb.org/EllipticCurve/)

Cité par Sources :