Soit
Let
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1056
Mots-clés : elliptic curves, Mordell–Weil rank, class number
@article{JTNB_2018__30_3_893_0, author = {Sairaiji, Fumio and Yamauchi, Takuya}, title = {On the class numbers of the fields of the $p^n$-torsion points of elliptic curves over $\protect \mathbb{Q}$}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {893--915}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {30}, number = {3}, year = {2018}, doi = {10.5802/jtnb.1056}, zbl = {1443.11101}, mrnumber = {3938633}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jtnb.1056/} }
TY - JOUR AU - Sairaiji, Fumio AU - Yamauchi, Takuya TI - On the class numbers of the fields of the $p^n$-torsion points of elliptic curves over $\protect \mathbb{Q}$ JO - Journal de théorie des nombres de Bordeaux PY - 2018 SP - 893 EP - 915 VL - 30 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://www.numdam.org/articles/10.5802/jtnb.1056/ DO - 10.5802/jtnb.1056 LA - en ID - JTNB_2018__30_3_893_0 ER -
%0 Journal Article %A Sairaiji, Fumio %A Yamauchi, Takuya %T On the class numbers of the fields of the $p^n$-torsion points of elliptic curves over $\protect \mathbb{Q}$ %J Journal de théorie des nombres de Bordeaux %D 2018 %P 893-915 %V 30 %N 3 %I Société Arithmétique de Bordeaux %U https://www.numdam.org/articles/10.5802/jtnb.1056/ %R 10.5802/jtnb.1056 %G en %F JTNB_2018__30_3_893_0
Sairaiji, Fumio; Yamauchi, Takuya. On the class numbers of the fields of the $p^n$-torsion points of elliptic curves over $\protect \mathbb{Q}$. Journal de théorie des nombres de Bordeaux, Tome 30 (2018) no. 3, pp. 893-915. doi : 10.5802/jtnb.1056. https://www.numdam.org/articles/10.5802/jtnb.1056/
[1] The cohomology of abelian varieties over a number field, Usp. Mat. Nauk, Volume 27 (1972) no. 6, pp. 25-66 translation in Russ. Math. Surv. 17 (1972), no. 1, p. 25-70 | MR | Zbl
[2] Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 21, Springer, 1990 | Zbl
[3] Surjectivity of mod
[4] Elliptic curves with 3-adic Galois representation surjective mod
[5] Iwasawa
[6] Iwasawa theory past and present, Class field theory its centenary and prospect (Tokyo, 1998) (Advanced Studies in Pure Mathematics), Volume 30, Mathematical Society of Japan, 2001, pp. 335-385 | DOI | MR | Zbl
[7] Modèles de Néron et monodromie, Seminaire de géométrie algébrique Du Bois-Marie 1967-1969 (SGA 7) (Lecture Notes in Mathematics), Volume 288, Springer, 1972, pp. 313-523 | Zbl
[8] Class numbers associated to elliptic curves over
[9] Database of Local Fields (available at https://math.la.asu.edu/~jj/localfields/)
[10] Elliptic curves: Diophantine analysis, Grundlehren der Mathematischen Wissenschaften, 231, Springer, 1978 | MR | Zbl
[11] Vanishing of some Galois cohomology groups for elliptic curves, Elliptic curves, modular forms and Iwasawa theory (Springer Proceedings in Mathematics & Statistics), Volume 188, Springer, 2016, pp. 373-399 | DOI | MR | Zbl
[12] Courbes de Weil semi-stables de discriminant une puissance
[13] On the class numbers of the fields of the
[14] Proprietes galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math., Volume 15 (1972) no. 4, pp. 259-331 | DOI | MR | Zbl
[15] The arithmetic of elliptic curves, Graduate Texts in Mathematics, 106, Springer, 1986 | MR | Zbl
[16] Elliptic Curves over Number Fields (http://www.lmfdb.org/EllipticCurve/)
Cité par Sources :