Let be an elliptic curve over which has multiplicative reduction at a fixed prime . Assume has multiplicative reduction or potentially good reduction at any prime not equal to . For each positive integer we put . The aim of this paper is to extend the authors’ previous results in [13] concerning with the order of the -Sylow group of the ideal class group of to more general setting. We also modify the previous lower bound of the order given in terms of the Mordell–Weil rank of and the ramification related to .
Soit une courbe elliptique sur ayant réduction multiplicative en un nombre premier . Supposons que en tout nombre premier différent de la courbe a une réduction multiplicative ou potentiellement bonne. Pour chaque entier positif on pose . Le but de cet article est d’étendre nos résultats précédents [13] concernant l’ordre du -sous-groupe de Sylow du groupe des classes d’idéaux de à un cadre plus général. Nous modifions également la borne inférieure précédente de cet ordre donnée en termes du rang de Mordell–Weil de et de la ramification liée à .
Revised:
Accepted:
Published online:
DOI: 10.5802/jtnb.1056
Keywords: elliptic curves, Mordell–Weil rank, class number
@article{JTNB_2018__30_3_893_0, author = {Sairaiji, Fumio and Yamauchi, Takuya}, title = {On the class numbers of the fields of the $p^n$-torsion points of elliptic curves over $\protect \mathbb{Q}$}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {893--915}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {30}, number = {3}, year = {2018}, doi = {10.5802/jtnb.1056}, zbl = {1443.11101}, mrnumber = {3938633}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jtnb.1056/} }
TY - JOUR AU - Sairaiji, Fumio AU - Yamauchi, Takuya TI - On the class numbers of the fields of the $p^n$-torsion points of elliptic curves over $\protect \mathbb{Q}$ JO - Journal de théorie des nombres de Bordeaux PY - 2018 SP - 893 EP - 915 VL - 30 IS - 3 PB - Société Arithmétique de Bordeaux UR - http://archive.numdam.org/articles/10.5802/jtnb.1056/ DO - 10.5802/jtnb.1056 LA - en ID - JTNB_2018__30_3_893_0 ER -
%0 Journal Article %A Sairaiji, Fumio %A Yamauchi, Takuya %T On the class numbers of the fields of the $p^n$-torsion points of elliptic curves over $\protect \mathbb{Q}$ %J Journal de théorie des nombres de Bordeaux %D 2018 %P 893-915 %V 30 %N 3 %I Société Arithmétique de Bordeaux %U http://archive.numdam.org/articles/10.5802/jtnb.1056/ %R 10.5802/jtnb.1056 %G en %F JTNB_2018__30_3_893_0
Sairaiji, Fumio; Yamauchi, Takuya. On the class numbers of the fields of the $p^n$-torsion points of elliptic curves over $\protect \mathbb{Q}$. Journal de théorie des nombres de Bordeaux, Volume 30 (2018) no. 3, pp. 893-915. doi : 10.5802/jtnb.1056. http://archive.numdam.org/articles/10.5802/jtnb.1056/
[1] The cohomology of abelian varieties over a number field, Usp. Mat. Nauk, Volume 27 (1972) no. 6, pp. 25-66 translation in Russ. Math. Surv. 17 (1972), no. 1, p. 25-70 | MR | Zbl
[2] Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 21, Springer, 1990 | Zbl
[3] Surjectivity of mod representations of elliptic curves, Math. Z., Volume 272 (2012) no. 3-4, pp. 961-964 | DOI | MR | Zbl
[4] Elliptic curves with 3-adic Galois representation surjective mod but not mod (2006) (preprint)
[5] Iwasawa -invariants and Mordell–Weil ranks of abelian varieties with complex multiplication, Acta Arith., Volume 127 (2007) no. 4, pp. 305-307 | DOI | MR | Zbl
[6] Iwasawa theory past and present, Class field theory its centenary and prospect (Tokyo, 1998) (Advanced Studies in Pure Mathematics), Volume 30, Mathematical Society of Japan, 2001, pp. 335-385 | DOI | MR | Zbl
[7] Modèles de Néron et monodromie, Seminaire de géométrie algébrique Du Bois-Marie 1967-1969 (SGA 7) (Lecture Notes in Mathematics), Volume 288, Springer, 1972, pp. 313-523 | Zbl
[8] Class numbers associated to elliptic curves over with good reduction at (2016) (preprint)
[9] Database of Local Fields (available at https://math.la.asu.edu/~jj/localfields/)
[10] Elliptic curves: Diophantine analysis, Grundlehren der Mathematischen Wissenschaften, 231, Springer, 1978 | MR | Zbl
[11] Vanishing of some Galois cohomology groups for elliptic curves, Elliptic curves, modular forms and Iwasawa theory (Springer Proceedings in Mathematics & Statistics), Volume 188, Springer, 2016, pp. 373-399 | DOI | MR | Zbl
[12] Courbes de Weil semi-stables de discriminant une puissance -iéme, J. Reine Angew. Math., Volume 400 (1989), pp. 173-184 | Zbl
[13] On the class numbers of the fields of the -torsion points of certain elliptic curves over , J. Number Theory, Volume 156 (2015), pp. 277-289 | DOI | MR | Zbl
[14] Proprietes galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math., Volume 15 (1972) no. 4, pp. 259-331 | DOI | MR | Zbl
[15] The arithmetic of elliptic curves, Graduate Texts in Mathematics, 106, Springer, 1986 | MR | Zbl
[16] Elliptic Curves over Number Fields (http://www.lmfdb.org/EllipticCurve/)
Cited by Sources: