We prove a variational open adelic image theorem for the Galois action on the cohomology of smooth proper -schemes where is a smooth variety over a finitely generated field of positive characteristic. A central tool is a recent result of Cadoret, Hui and Tamagawa.
Nous démontrons un théorème de l’image adélique ouverte variationnel pour l’action du groupe de Galois sur la cohomologie d’un -schéma propre et lisse, où est une variété lisse sur un corps de type fini sur . Notre outil clé est un résultat récent de Cadoret, Hui et Tamagawa.
Revised:
Accepted:
Published online:
DOI: 10.5802/jtnb.1059
Keywords: Compatible system, adelic openness, positive characteristic
@article{JTNB_2018__30_3_965_0, author = {B\"ockle, Gebhard and Gajda, Wojciech and Petersen, Sebastian}, title = {A variational open image theorem in positive characteristic}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {965--977}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {30}, number = {3}, year = {2018}, doi = {10.5802/jtnb.1059}, mrnumber = {3938636}, zbl = {07081582}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jtnb.1059/} }
TY - JOUR AU - Böckle, Gebhard AU - Gajda, Wojciech AU - Petersen, Sebastian TI - A variational open image theorem in positive characteristic JO - Journal de théorie des nombres de Bordeaux PY - 2018 SP - 965 EP - 977 VL - 30 IS - 3 PB - Société Arithmétique de Bordeaux UR - http://archive.numdam.org/articles/10.5802/jtnb.1059/ DO - 10.5802/jtnb.1059 LA - en ID - JTNB_2018__30_3_965_0 ER -
%0 Journal Article %A Böckle, Gebhard %A Gajda, Wojciech %A Petersen, Sebastian %T A variational open image theorem in positive characteristic %J Journal de théorie des nombres de Bordeaux %D 2018 %P 965-977 %V 30 %N 3 %I Société Arithmétique de Bordeaux %U http://archive.numdam.org/articles/10.5802/jtnb.1059/ %R 10.5802/jtnb.1059 %G en %F JTNB_2018__30_3_965_0
Böckle, Gebhard; Gajda, Wojciech; Petersen, Sebastian. A variational open image theorem in positive characteristic. Journal de théorie des nombres de Bordeaux, Volume 30 (2018) no. 3, pp. 965-977. doi : 10.5802/jtnb.1059. http://archive.numdam.org/articles/10.5802/jtnb.1059/
[1] Altération de variétés algébriques, Séminaire Bourbaki. Volume 1995/96 (Astérisque), Volume 241, Société Mathématique de France, 1997, pp. 273-311 | MR | Zbl
[2] Independence of -adic representations of geometric Galois groups, J. Reine Angew. Math., Volume 736 (2015), pp. 69-93 | DOI | MR | Zbl
[3] An open adelic image theorem for motivic representations over function fields (to appear in Math. Res. Lett., https://webusers.imj-prg.fr/~anna.cadoret/Cadoret_MRL.pdf) | DOI | Zbl
[4] An open adelic image theorem for abelian schemes, Int. Math. Res. Not., Volume 2015 (2015) no. 20, pp. 10208-10242 | DOI | MR | Zbl
[5] Geometric monodromy - semisimplicity and maximality, Ann. Math., Volume 186 (2017) no. 1, pp. 205-236 | DOI | MR | Zbl
[6] Galois generic points on Shimura varieties, Algebra Number Theory, Volume 10 (2016) no. 9, pp. 1893-1934 | DOI | MR | Zbl
[7] On the geometric image of -linear representations of étale fundamental groups, Int. Math. Res. Not. (2017), rnx193 (Art. ID rnx193) | DOI
[8] La conjecture de Weil I, Publ. Math., Inst. Hautes Étud. Sci., Volume 43 (1974), pp. 273-307 | DOI | Numdam | Zbl
[9] La conjecture de Weil II, Publ. Math., Inst. Hautes Étud. Sci., Volume 52 (1980), pp. 137-252 | DOI | Numdam | Zbl
[10] Analytic pro- groups, Cambridge Studies in Advanced Mathematics, 61, Cambridge University Press, 1999, xviii+368 pages | MR | Zbl
[11] On a conjecture of Deligne, Mosc. Math. J., Volume 12 (2012) no. 3, pp. 515-542 | DOI | MR | Zbl
[12] Adelic openness without the Mumford–Tate conjecture (2013) (https://arxiv.org/abs/1312.3812)
[13] On different notions of tameness in arithmetic geometry, Math. Ann., Volume 346 (2010) no. 3, pp. 641-668 | DOI | MR | Zbl
[14] On -independence of algebraic monodromy groups in compatible systems of representations, Invent. Math., Volume 107 (1992) no. 3, pp. 603-636 | DOI | MR | Zbl
[15] Abelian varieties, -adic representations and -independence, Math. Ann., Volume 302 (1995) no. 3, pp. 561-579 | DOI | MR | Zbl
[16] Algebraic Groups – The theory of group schemes of finite type over a field (Lecture notes available at www.jmilne.org)
[17] Étale Cohomology, Princeton Mathematical Series, 33, Princeton University Press, 1980, xiii+323 pages | MR | Zbl
[18] A Combination of the conjectures of Mordell-Lang and André-Oort, Math. Ann., Volume 302 (1995) no. 3, pp. 561-579 | Zbl
[19] Sur les groupes de Galois attachés aux groups -divisible, Proceedings on a conference on local fields, Springer, 1967 | DOI | Zbl
[20] Lectures on the Mordell-Weil theorem, Aspects of Mathematics, E15, Viehweg, 1989 | Zbl
[21] Lettre à Ken Ribet du 1/1/1981 et du 29/1/1981, Collected papers. Vol. IV: 1985–1998, Springer, 2000
Cited by Sources: