Let be a number field with ring of integers . is said to be monogenic if for some . Monogeneity of a number field is not always guaranteed. Furthermore, it is rare for two number fields to have the same discriminant, thus finding fields with these two properties is an interesting problem. In this paper we show that there exist infinitely many triples of polynomials defining distinct monogenic cubic fields with the same discriminant.
Un corps de nombres est dit monogène si son anneau des entiers vérifie pour un certain . La monogénéité d’un corps de nombres n’est pas toujours assurée. En outre, il est rare que deux corps de nombres aient le même discriminant. Donc, trouver des corps avec ces deux propriétés est un problème intéressant. Dans cet article, nous montrons qu’il existe une infinité de triplets de polynômes définissant des corps cubiques monogènes distincts de même discriminant.
Revised:
Accepted:
Published online:
DOI: 10.5802/jtnb.1061
Keywords: Cubic field, monogenic, discriminant
@article{JTNB_2018__30_3_991_0, author = {Davis, Chad T. and Spearman, Blair K. and Yoo, Jeewon}, title = {Cubic polynomials defining monogenic fields with the same discriminant}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {991--996}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {30}, number = {3}, year = {2018}, doi = {10.5802/jtnb.1061}, mrnumber = {3938638}, zbl = {07081584}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jtnb.1061/} }
TY - JOUR AU - Davis, Chad T. AU - Spearman, Blair K. AU - Yoo, Jeewon TI - Cubic polynomials defining monogenic fields with the same discriminant JO - Journal de théorie des nombres de Bordeaux PY - 2018 SP - 991 EP - 996 VL - 30 IS - 3 PB - Société Arithmétique de Bordeaux UR - http://archive.numdam.org/articles/10.5802/jtnb.1061/ DO - 10.5802/jtnb.1061 LA - en ID - JTNB_2018__30_3_991_0 ER -
%0 Journal Article %A Davis, Chad T. %A Spearman, Blair K. %A Yoo, Jeewon %T Cubic polynomials defining monogenic fields with the same discriminant %J Journal de théorie des nombres de Bordeaux %D 2018 %P 991-996 %V 30 %N 3 %I Société Arithmétique de Bordeaux %U http://archive.numdam.org/articles/10.5802/jtnb.1061/ %R 10.5802/jtnb.1061 %G en %F JTNB_2018__30_3_991_0
Davis, Chad T.; Spearman, Blair K.; Yoo, Jeewon. Cubic polynomials defining monogenic fields with the same discriminant. Journal de théorie des nombres de Bordeaux, Volume 30 (2018) no. 3, pp. 991-996. doi : 10.5802/jtnb.1061. http://archive.numdam.org/articles/10.5802/jtnb.1061/
[1] -integral bases of a cubic field, Proc. Am. Math. Soc., Volume 126 (1998) no. 7, pp. 1949-1953 | DOI | MR | Zbl
[2] Number Theory, Academic Press Inc., 1966 | Zbl
[3] Effective determination of the decomposition of the rational primes in a cubic field, Proc. Am. Math. Soc., Volume 87 (1983) no. 4, pp. 579-585 | DOI | MR | Zbl
[4] How many fields share a common discriminant? (Multiplicity problem) (Algebra and Algebraic Number Theory, http://www.algebra.at/index_e.htm)
[5] Algebraic Number Theory, Discrete Mathematics and its Applications, CRC Press, 2011 | MR | Zbl
[6] On ranks of twists of elliptic curves and power-free values of binary forms, J. Am. Math. Soc., Volume 8 (1995) no. 4, pp. 943-973 | DOI | MR | Zbl
Cited by Sources: