Un corps de nombres
Let
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1061
Mots-clés : Cubic field, monogenic, discriminant
@article{JTNB_2018__30_3_991_0, author = {Davis, Chad T. and Spearman, Blair K. and Yoo, Jeewon}, title = {Cubic polynomials defining monogenic fields with the same discriminant}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {991--996}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {30}, number = {3}, year = {2018}, doi = {10.5802/jtnb.1061}, mrnumber = {3938638}, zbl = {07081584}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jtnb.1061/} }
TY - JOUR AU - Davis, Chad T. AU - Spearman, Blair K. AU - Yoo, Jeewon TI - Cubic polynomials defining monogenic fields with the same discriminant JO - Journal de théorie des nombres de Bordeaux PY - 2018 SP - 991 EP - 996 VL - 30 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://www.numdam.org/articles/10.5802/jtnb.1061/ DO - 10.5802/jtnb.1061 LA - en ID - JTNB_2018__30_3_991_0 ER -
%0 Journal Article %A Davis, Chad T. %A Spearman, Blair K. %A Yoo, Jeewon %T Cubic polynomials defining monogenic fields with the same discriminant %J Journal de théorie des nombres de Bordeaux %D 2018 %P 991-996 %V 30 %N 3 %I Société Arithmétique de Bordeaux %U https://www.numdam.org/articles/10.5802/jtnb.1061/ %R 10.5802/jtnb.1061 %G en %F JTNB_2018__30_3_991_0
Davis, Chad T.; Spearman, Blair K.; Yoo, Jeewon. Cubic polynomials defining monogenic fields with the same discriminant. Journal de théorie des nombres de Bordeaux, Tome 30 (2018) no. 3, pp. 991-996. doi : 10.5802/jtnb.1061. https://www.numdam.org/articles/10.5802/jtnb.1061/
[1]
[2] Number Theory, Academic Press Inc., 1966 | Zbl
[3] Effective determination of the decomposition of the rational primes in a cubic field, Proc. Am. Math. Soc., Volume 87 (1983) no. 4, pp. 579-585 | DOI | MR | Zbl
[4] How many fields share a common discriminant? (Multiplicity problem) (Algebra and Algebraic Number Theory, http://www.algebra.at/index_e.htm)
[5] Algebraic Number Theory, Discrete Mathematics and its Applications, CRC Press, 2011 | MR | Zbl
[6] On ranks of twists of elliptic curves and power-free values of binary forms, J. Am. Math. Soc., Volume 8 (1995) no. 4, pp. 943-973 | DOI | MR | Zbl
Cité par Sources :