Let be a prime, the minus quotient of the Iwasawa module, which we define to be the Galois group of the maximal unramified abelian pro--extension over the cyclotomic -extension over a CM field . If is an odd prime, it is well known that has no non-trivial finite -submodule. But has non-trivial finite -submodule in some cases for . In this paper, we study the maximal finite -submodule of for . We determine the size of the maximal finite -submodule of under some mild assumptions.
Soit un corps CM et un nombre premier. Soit le quotient “moins” du groupe de Galois de la pro--extension abélienne non ramifiée maximale de la -extension cyclotomique de . Si ne vaut pas 2, il est bien connu que n’a pas de sous-module fini non-trivial. Mais pour , il peut arriver que contient un sous-module fini non-trivial. Dans cet article, nous étudions le sous-module fini maximal de pour , et nous déterminons ce module sous certaines légères hypothèses.
Revised:
Accepted:
Published online:
DOI: 10.5802/jtnb.1063
Keywords: Iwasawa theory, Iwasawa module, Galois module structure
@article{JTNB_2018__30_3_1017_0, author = {Atsuta, Mahiro}, title = {Finite $\Lambda $-submodules of {Iwasawa} modules for a {CM-field} for $p=2$}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {1017--1035}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {30}, number = {3}, year = {2018}, doi = {10.5802/jtnb.1063}, mrnumber = {3938640}, zbl = {1435.11137}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jtnb.1063/} }
TY - JOUR AU - Atsuta, Mahiro TI - Finite $\Lambda $-submodules of Iwasawa modules for a CM-field for $p=2$ JO - Journal de théorie des nombres de Bordeaux PY - 2018 SP - 1017 EP - 1035 VL - 30 IS - 3 PB - Société Arithmétique de Bordeaux UR - http://archive.numdam.org/articles/10.5802/jtnb.1063/ DO - 10.5802/jtnb.1063 LA - en ID - JTNB_2018__30_3_1017_0 ER -
%0 Journal Article %A Atsuta, Mahiro %T Finite $\Lambda $-submodules of Iwasawa modules for a CM-field for $p=2$ %J Journal de théorie des nombres de Bordeaux %D 2018 %P 1017-1035 %V 30 %N 3 %I Société Arithmétique de Bordeaux %U http://archive.numdam.org/articles/10.5802/jtnb.1063/ %R 10.5802/jtnb.1063 %G en %F JTNB_2018__30_3_1017_0
Atsuta, Mahiro. Finite $\Lambda $-submodules of Iwasawa modules for a CM-field for $p=2$. Journal de théorie des nombres de Bordeaux, Volume 30 (2018) no. 3, pp. 1017-1035. doi : 10.5802/jtnb.1063. http://archive.numdam.org/articles/10.5802/jtnb.1063/
[1] The cyclotomic -extension of imaginary quadratic fields, Am. J. Math., Volume 102 (1980), pp. 447-459 | DOI | MR | Zbl
[2] On the Iwasawa invariants of totally real number fields, Am. J. Math., Volume 98 (1976), pp. 263-284 | DOI | MR | Zbl
[3] On the structure of certain Galois cohomology groups, Doc. Math., Volume Extra Volume (2006), pp. 357-413 | MR | Zbl
[4] On the structure of Selmer groups, Elliptic curves, modular forms and Iwasawa theory. In honour of John H. Coates’ 70th birthday (Springer Proceedings in Mathematics & Statistics), Volume 188, Springer, 2016, pp. 225-252 | DOI | MR | Zbl
[5] Über die Klassenzahl abelscher Zahlkörper, Mathematische Lehrbücher und Monographien, 1, Akademie-Verlag, 1952 | Zbl
[6] On -extensions of algebraic number fields, Ann. Math., Volume 98 (1973), pp. 246-326 | DOI | Zbl
[7] Ideal class groups of cyclotomic number fields I, Acta Arith., Volume 72 (1984) no. 2, pp. 347-359 | MR | Zbl
[8] Cohomology of number fields, Grundlehren der Mathematischen Wissenschaften, 323, Springer, 2008 | MR | Zbl
[9] Introduction to Cyclotomic Fields, Graduate Texts in Mathematics, 83, Springer, 1997 | MR | Zbl
Cited by Sources: