Étant donné un corps fini
Nous donnons une expression explicite des fonctions
où
For a finite field
We provide an explicit expression for the
where
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1065
Mots-clés : Elliptic curves over function fields, Explicit computation of
@article{JTNB_2018__30_3_1059_0, author = {Griffon, Richard}, title = {Explicit $L$-functions and a {Brauer{\textendash}Siegel} theorem for {Hessian} elliptic curves}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {1059--1084}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {30}, number = {3}, year = {2018}, doi = {10.5802/jtnb.1065}, zbl = {1441.11143}, mrnumber = {3938642}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jtnb.1065/} }
TY - JOUR AU - Griffon, Richard TI - Explicit $L$-functions and a Brauer–Siegel theorem for Hessian elliptic curves JO - Journal de théorie des nombres de Bordeaux PY - 2018 SP - 1059 EP - 1084 VL - 30 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://www.numdam.org/articles/10.5802/jtnb.1065/ DO - 10.5802/jtnb.1065 LA - en ID - JTNB_2018__30_3_1059_0 ER -
%0 Journal Article %A Griffon, Richard %T Explicit $L$-functions and a Brauer–Siegel theorem for Hessian elliptic curves %J Journal de théorie des nombres de Bordeaux %D 2018 %P 1059-1084 %V 30 %N 3 %I Société Arithmétique de Bordeaux %U https://www.numdam.org/articles/10.5802/jtnb.1065/ %R 10.5802/jtnb.1065 %G en %F JTNB_2018__30_3_1059_0
Griffon, Richard. Explicit $L$-functions and a Brauer–Siegel theorem for Hessian elliptic curves. Journal de théorie des nombres de Bordeaux, Tome 30 (2018) no. 3, pp. 1059-1084. doi : 10.5802/jtnb.1065. https://www.numdam.org/articles/10.5802/jtnb.1065/
[1] Number theory. Vol. I. Tools and Diophantine equations, Graduate Texts in Mathematics, 239, Springer, 2007 | MR | Zbl
[2] Explicit points on the Legendre curve II, Math. Res. Lett., Volume 21 (2014) no. 2, pp. 261-280 | DOI | MR | Zbl
[3] Explicit points on
[4] Analogues du théorème de Brauer–Siegel pour quelques familles de courbes elliptiques, Université Paris Diderot (France) (2016) (Ph. D. Thesis)
[5] Analogue of the Brauer–Siegel theorem for Legendre elliptic curves, J. Number Theory, Volume 193 (2018), pp. 189-212 | DOI | MR | Zbl
[6] Bounds on special values of
[7] A Brauer–Siegel theorem for Fermat surfaces over finite fields, J. Lond. Math. Soc., Volume 97 (2018) no. 3, pp. 523-549 | DOI | MR | Zbl
[8] An introduction to the theory of numbers, Oxford University Press, 2008 | Zbl
[9] Why is it difficult to compute the Mordell–Weil group?, Diophantine geometry (Centro di Ricerca Matematica Ennio De Giorgi (CRM)), Volume 4, Edizioni della Normale, 2007, pp. 197-219 | MR | Zbl
[10] An analogue of the Brauer–Siegel theorem for abelian varieties in positive characteristic, Mosc. Math. J., Volume 16 (2016) no. 1, pp. 45-93 | DOI | MR | Zbl
[11] Conjectured Diophantine estimates on elliptic curves, Arithmetic and geometry, Vol. I (Progress in Mathematics), Volume 35, Birkhäuser, 1983, pp. 155-171 | DOI | MR | Zbl
[12] Algebraic number theory, Graduate Texts in Mathematics, 110, Springer, 1994
[13] Elliptic surfaces, Algebraic geometry in East Asia—Seoul 2008 (Advanced Studies in Pure Mathematics), Volume 60, Mathematical Society of Japan, 2008, pp. 51-160 | Zbl
[14] Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, 151, Springer, 1994 | MR | Zbl
[15] The arithmetic of elliptic curves, Graduate Texts in Mathematics, 106, Springer, 2009 | MR | Zbl
[16] On the conjectures of Birch and Swinnerton-Dyer and a geometric analog, Séminaire Bourbaki, Vol. 9, Société Mathématique de France, 1965, pp. 415-440 | Zbl
[17] Elliptic curves with large rank over function fields, Ann. Math., Volume 155 (2002) no. 1, pp. 295-315 | DOI | MR | Zbl
[18]
[19] Elliptic curves over function fields, Arithmetic of
[20] Explicit points on the Legendre curve, J. Number Theory, Volume 136 (2014), pp. 165-194 | DOI | MR | Zbl
Cité par Sources :