For a finite field of characteristic and , we consider the family of elliptic curves over given by for all integers coprime to .
We provide an explicit expression for the -functions of these curves. Moreover, we deduce from this calculation that the curves satisfy an analogue of the Brauer–Siegel theorem. Precisely, we show that, for ranging over the integers coprime with , one has
where denotes the exponential differential height of , its Tate–Shafarevich group and its Néron–Tate regulator.
Étant donné un corps fini de caractéristique , nous considérons la famille de courbes elliptiques définies sur par , pour tout entier qui est premier à .
Nous donnons une expression explicite des fonctions de ces courbes. De plus, nous déduisons de ce calcul que les courbes satisfont un analogue du théorème de Brauer–Siegel. Plus spécifiquement, nous montrons que, lorsque parcourt les entiers premiers à , l’on a
où désigne la hauteur différentielle exponentielle de , son groupe de Tate–Shafarevich et son régulateur de Néron–Tate.
Accepted:
Published online:
DOI: 10.5802/jtnb.1065
Keywords: Elliptic curves over function fields, Explicit computation of $L$-functions, Special values of $L$-functions and BSD conjecture, Estimates of special values, Analogue of the Brauer–Siegel theorem.
@article{JTNB_2018__30_3_1059_0, author = {Griffon, Richard}, title = {Explicit $L$-functions and a {Brauer{\textendash}Siegel} theorem for {Hessian} elliptic curves}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {1059--1084}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {30}, number = {3}, year = {2018}, doi = {10.5802/jtnb.1065}, zbl = {1441.11143}, mrnumber = {3938642}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jtnb.1065/} }
TY - JOUR AU - Griffon, Richard TI - Explicit $L$-functions and a Brauer–Siegel theorem for Hessian elliptic curves JO - Journal de théorie des nombres de Bordeaux PY - 2018 SP - 1059 EP - 1084 VL - 30 IS - 3 PB - Société Arithmétique de Bordeaux UR - http://archive.numdam.org/articles/10.5802/jtnb.1065/ DO - 10.5802/jtnb.1065 LA - en ID - JTNB_2018__30_3_1059_0 ER -
%0 Journal Article %A Griffon, Richard %T Explicit $L$-functions and a Brauer–Siegel theorem for Hessian elliptic curves %J Journal de théorie des nombres de Bordeaux %D 2018 %P 1059-1084 %V 30 %N 3 %I Société Arithmétique de Bordeaux %U http://archive.numdam.org/articles/10.5802/jtnb.1065/ %R 10.5802/jtnb.1065 %G en %F JTNB_2018__30_3_1059_0
Griffon, Richard. Explicit $L$-functions and a Brauer–Siegel theorem for Hessian elliptic curves. Journal de théorie des nombres de Bordeaux, Volume 30 (2018) no. 3, pp. 1059-1084. doi : 10.5802/jtnb.1065. http://archive.numdam.org/articles/10.5802/jtnb.1065/
[1] Number theory. Vol. I. Tools and Diophantine equations, Graduate Texts in Mathematics, 239, Springer, 2007 | MR | Zbl
[2] Explicit points on the Legendre curve II, Math. Res. Lett., Volume 21 (2014) no. 2, pp. 261-280 | DOI | MR | Zbl
[3] Explicit points on and related character sums, J. Number Theory, Volume 168 (2016), pp. 13-38 | DOI | MR | Zbl
[4] Analogues du théorème de Brauer–Siegel pour quelques familles de courbes elliptiques, Université Paris Diderot (France) (2016) (Ph. D. Thesis)
[5] Analogue of the Brauer–Siegel theorem for Legendre elliptic curves, J. Number Theory, Volume 193 (2018), pp. 189-212 | DOI | MR | Zbl
[6] Bounds on special values of -functions of elliptic curves in an Artin-Schreier family (2018) (to appear in European J. Math) | Zbl
[7] A Brauer–Siegel theorem for Fermat surfaces over finite fields, J. Lond. Math. Soc., Volume 97 (2018) no. 3, pp. 523-549 | DOI | MR | Zbl
[8] An introduction to the theory of numbers, Oxford University Press, 2008 | Zbl
[9] Why is it difficult to compute the Mordell–Weil group?, Diophantine geometry (Centro di Ricerca Matematica Ennio De Giorgi (CRM)), Volume 4, Edizioni della Normale, 2007, pp. 197-219 | MR | Zbl
[10] An analogue of the Brauer–Siegel theorem for abelian varieties in positive characteristic, Mosc. Math. J., Volume 16 (2016) no. 1, pp. 45-93 | DOI | MR | Zbl
[11] Conjectured Diophantine estimates on elliptic curves, Arithmetic and geometry, Vol. I (Progress in Mathematics), Volume 35, Birkhäuser, 1983, pp. 155-171 | DOI | MR | Zbl
[12] Algebraic number theory, Graduate Texts in Mathematics, 110, Springer, 1994
[13] Elliptic surfaces, Algebraic geometry in East Asia—Seoul 2008 (Advanced Studies in Pure Mathematics), Volume 60, Mathematical Society of Japan, 2008, pp. 51-160 | Zbl
[14] Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, 151, Springer, 1994 | MR | Zbl
[15] The arithmetic of elliptic curves, Graduate Texts in Mathematics, 106, Springer, 2009 | MR | Zbl
[16] On the conjectures of Birch and Swinnerton-Dyer and a geometric analog, Séminaire Bourbaki, Vol. 9, Société Mathématique de France, 1965, pp. 415-440 | Zbl
[17] Elliptic curves with large rank over function fields, Ann. Math., Volume 155 (2002) no. 1, pp. 295-315 | DOI | MR | Zbl
[18] -functions with large analytic rank and abelian varieties with large algebraic rank over function fields, Invent. Math., Volume 167 (2007) no. 2, pp. 379-408 | DOI | MR | Zbl
[19] Elliptic curves over function fields, Arithmetic of -functions (IAS/Park City Mathematics Series), Volume 18, American Mathematical Society, 2011, pp. 211-280 | DOI | MR | Zbl
[20] Explicit points on the Legendre curve, J. Number Theory, Volume 136 (2014), pp. 165-194 | DOI | MR | Zbl
Cited by Sources: