We extend the results by R.P. Langlands on representations of (connected) abelian algebraic groups. This is done by considering characters into any divisible abelian topological group. With this we can then prove what is known as the abelian case of the -adic Langlands program.
Nous étendons les résultats de R.P. Langlands sur les représentations des groupes algébriques abéliens connexes. Pour démontrer nos théorèmes, nous considérons les caractères à valeurs dans un groupe topologique abélien divisible quelconque. Cela nous permet de prouver le cas abélien du programme de Langlands -adique.
Revised:
Accepted:
Published online:
Keywords: $p$-adic, Langlands, tori
@article{JTNB_2020__32_1_133_0, author = {Birkbeck, Christopher}, title = {On the $p$-adic {Langlands} correspondence for algebraic tori}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {133--158}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {32}, number = {1}, year = {2020}, doi = {10.5802/jtnb.1114}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jtnb.1114/} }
TY - JOUR AU - Birkbeck, Christopher TI - On the $p$-adic Langlands correspondence for algebraic tori JO - Journal de théorie des nombres de Bordeaux PY - 2020 SP - 133 EP - 158 VL - 32 IS - 1 PB - Société Arithmétique de Bordeaux UR - http://archive.numdam.org/articles/10.5802/jtnb.1114/ DO - 10.5802/jtnb.1114 LA - en ID - JTNB_2020__32_1_133_0 ER -
%0 Journal Article %A Birkbeck, Christopher %T On the $p$-adic Langlands correspondence for algebraic tori %J Journal de théorie des nombres de Bordeaux %D 2020 %P 133-158 %V 32 %N 1 %I Société Arithmétique de Bordeaux %U http://archive.numdam.org/articles/10.5802/jtnb.1114/ %R 10.5802/jtnb.1114 %G en %F JTNB_2020__32_1_133_0
Birkbeck, Christopher. On the $p$-adic Langlands correspondence for algebraic tori. Journal de théorie des nombres de Bordeaux, Volume 32 (2020) no. 1, pp. 133-158. doi : 10.5802/jtnb.1114. http://archive.numdam.org/articles/10.5802/jtnb.1114/
[1] Class field theory, AMS Chelsea Publishing, 2009 | Zbl
[2] The emerging -adic Langlands programme, Proceedings of the international congress of mathematicians (ICM 2010). Vol. II: Invited lectures, World Scientific; Hindustan Book Agency (2010), pp. 203-230 | MR | Zbl
[3] Cohomology of Groups, Graduate Texts in Mathematics, 87, Springer, 1982 | Zbl
[4] Representations of abelian algebraic groups, Pac. J. Math. (1997) no. Special Issue, pp. 231-250 (Olga Taussky-Todd: in memoriam) | DOI | MR | Zbl
[5] Arithmetic duality theorems, BookSurge, 2006 | Zbl
[6] Algebraic number theory, Grundlehren der Mathematischen Wissenschaften, 322, Springer, 1999 (transl. by N. Schappacher) | Zbl
[7] An Introduction to Homological Algebra, Universitext, Springer, 2009 | Zbl
[8] Local fields, Graduate Texts in Mathematics, Springer, 1980 (transl. by M. J. Greenberg) | Zbl
[9] Number theoretic background, Automorphic forms, representations and L-functions (Proceedings of Symposia in Pure Mathematics), Volume 33, Part 2, American Mathematical Society (1979), pp. 3-26 | DOI | Zbl
[10] An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, 38, Cambridge University Press, 1995 | Zbl
[11] Cohomology of Groups, Pure and Applied Mathematics, 34, Academic Press Inc., 1969 | MR | Zbl
Cited by Sources: