On Tate’s conjecture for the elliptic modular surface of level N over a prime field of characteristic 1modN
Journal de théorie des nombres de Bordeaux, Volume 32 (2020) no. 1, pp. 193-204.

Assuming partial semisimplicity of Frobenius, we show Tate’s conjecture for the reduction of the elliptic modular surface E(N) of level N at a prime p satisfying p1modN and show that the Mordell–Weil rank is zero in this case. This extends a result of Shioda to N>4. Furthermore, we show that for every number field L partial semisimplicity holds for the reductions of E(N) L at a set of places of density 1.

Modulo une hypothèse de semi-simplicité partielle, on démontre le conjecture de Tate pour la surface elliptique modulaire E(N) de niveau N sur un corps premier de cardinalité p1modN et on montre que le rang du groupe de Mordell–Weil est nul dans ce cas. Pour N4 c’est un résultat de Shioda. De plus, on démontre que l’hypothèse de semi-simplicité vaut en dehors d’un ensemble de nombres premiers p de densité nulle.

Received:
Accepted:
Published online:
DOI: 10.5802/jtnb.1117
Classification: 11G05, 11F11, 14F30
Keywords: elliptic curves, modular forms, $p$-adic cohomology, zeta function
Lodh, Rémi 1

1 Springer 4 Crinan St. London N1 9XW, UK
@article{JTNB_2020__32_1_193_0,
     author = {Lodh, R\'emi},
     title = {On {Tate{\textquoteright}s} conjecture for the elliptic modular surface of level $N$ over a prime field of characteristic $1\ \protect \mathrm{mod}\ N$},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {193--204},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {32},
     number = {1},
     year = {2020},
     doi = {10.5802/jtnb.1117},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/jtnb.1117/}
}
TY  - JOUR
AU  - Lodh, Rémi
TI  - On Tate’s conjecture for the elliptic modular surface of level $N$ over a prime field of characteristic $1\ \protect \mathrm{mod}\ N$
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2020
SP  - 193
EP  - 204
VL  - 32
IS  - 1
PB  - Société Arithmétique de Bordeaux
UR  - http://archive.numdam.org/articles/10.5802/jtnb.1117/
DO  - 10.5802/jtnb.1117
LA  - en
ID  - JTNB_2020__32_1_193_0
ER  - 
%0 Journal Article
%A Lodh, Rémi
%T On Tate’s conjecture for the elliptic modular surface of level $N$ over a prime field of characteristic $1\ \protect \mathrm{mod}\ N$
%J Journal de théorie des nombres de Bordeaux
%D 2020
%P 193-204
%V 32
%N 1
%I Société Arithmétique de Bordeaux
%U http://archive.numdam.org/articles/10.5802/jtnb.1117/
%R 10.5802/jtnb.1117
%G en
%F JTNB_2020__32_1_193_0
Lodh, Rémi. On Tate’s conjecture for the elliptic modular surface of level $N$ over a prime field of characteristic $1\ \protect \mathrm{mod}\ N$. Journal de théorie des nombres de Bordeaux, Volume 32 (2020) no. 1, pp. 193-204. doi : 10.5802/jtnb.1117. http://archive.numdam.org/articles/10.5802/jtnb.1117/

[1] Berthelot, Pierre Dualité de Poincaré et formule de Künneth en cohomologie rigide, C. R. Math. Acad. Sci. Paris, Volume 325 (1997) no. 5, pp. 493-498 | DOI | MR | Zbl

[2] Berthelot, Pierre Finitude et pureté cohomologique en cohomologie rigide (avec un appendice par Aise Johan de Jong), Invent. Math., Volume 128 (1997), pp. 329-377 | DOI | Zbl

[3] Théorie des intersections et théorème de Riemann–Roch (SGA 6) (Berthelot, Pierre; Grothendieck, Alexander; Illusie, Luc, eds.), Lecture Notes in Mathematics, 225, Springer, 1971 | Zbl

[4] Colmez, Pierre; Fontaine, Jean-Marc Construction des représentations p-adiques semi-stables, Invent. Math., Volume 140 (2000), pp. 1-43 | DOI | Zbl

[5] Deligne, Pierre Formes modulaires et représentations l-adiques, Séminaire Bourbaki 1968/69 (Lecture Notes in Mathematics), Volume 179, Springer (1971) | DOI | Zbl

[6] Deligne, Pierre; Rapoport, Michael Les schémas de modules de courbes elliptiques, Modular functions of one variable II (Lecture Notes in Mathematics), Volume 349, Springer (1973) | DOI | Zbl

[7] Faltings, Gerd Hodge–Tate structures and modular forms, Math. Ann., Volume 278 (1987), pp. 133-149 | DOI | MR | Zbl

[8] Fontaine, Jean-Marc Le corps des périodes p-adiques, Périodes p-adiques (Astérisque), Volume 223, Société Mathématique de France, 1994, pp. 59-111 | Numdam | Zbl

[9] Fontaine, Jean-Marc Représentations p-adiques semi-stables, Périodes p-adiques (Astérisque), Volume 223, Société Mathématique de France, 1994, pp. 113-184 | Numdam | Zbl

[10] Grothendieck, Alexandre Le groupe de Brauer, Dix exposés sur la cohomologie des schémas (Advanced Studies in Pure Mathematics (Amsterdam)), Volume 3, North-Holland (1968) | Zbl

[11] Illusie, Luc Complexe de de Rham–Witt et cohomologie cristalline, Ann. Sci. Éc. Norm. Supér., Volume 12 (1979), pp. 501-661 | DOI | Numdam | MR | Zbl

[12] Kleiman, Steven L The Picard scheme, Fundamental Algebraic Geometry (Mathematical Surveys and Monographs), Volume 123, American Mathematical Society (2005) | MR

[13] Lang, Serge Introduction to Modular Forms (With two appendices, by D. B. Zagier and by W. Feit), Grundlehren der Mathematischen Wissenschaften, 222, Springer, 1976 | Zbl

[14] Mazza, Carlo; Voevodsky, Vladimir; Weibel, Charles Lecture Notes on Motivic Cohomology, Clay Mathematics Monographs, 2, American Mathematical Society, 2006 | MR | Zbl

[15] Milne, James S. On a conjecture of Artin and Tate, Ann. Math., Volume 102 (1975), pp. 517-533 | DOI | MR | Zbl

[16] Ribet, Kenneth A. Galois representations attached to eigenforms with Nebentypus, Modular functions of one variable V (Lecture Notes in Mathematics), Volume 601, Springer (1977) | DOI | MR | Zbl

[17] Scholl, Anthony J. Motives for modular forms, Invent. Math., Volume 100 (1990) no. 2, pp. 419-430 | DOI | MR | Zbl

[18] Schütt, Matthias; Shioda, Tetsuji Elliptic Surfaces, Algebraic geometry in East Asia – Seoul 2008 (Advanced Studies in Pure Mathematics), Volume 60, Mathematical Society of Japan, 2010, pp. 51-160 | DOI | MR | Zbl

[19] Serre, Jean-Pierre Quelques applications du théorème de densité de Chebotarev, Publ. Math., Inst. Hautes Étud. Sci., Volume 54 (1981), pp. 123-201 | DOI | Numdam | Zbl

[20] Shioda, Tetsuji On elliptic modular surfaces, J. Math. Soc. Japan, Volume 24 (1972), pp. 20-59 | DOI | MR | Zbl

[21] Shioda, Tetsuji Algebraic cycles on certain K3 surfaces in characteristic p, Manifolds–Tokyo 1973 (Proc. Internat. Conf., Tokyo, 1973), University of Tokyo Press (1975), pp. 357-364 | Zbl

Cited by Sources: