In this paper, we describe an algorithm that, for a smooth connected curve over a field , a finite locally constant sheaf on of abelian groups of torsion invertible in , computes the first étale cohomology and the first étale cohomology with proper support as sets of torsors.
The complexity of this algorithm is exponential in , , and , where is the arithmetic genus of the normal completion of , is the arithmetic genus of the normal completion of the smooth curve representing , and is the degree of over .
The computation in this algorithm is done via the computation of a groupoid scheme classifying the -torsors with some extra rigidifying data.
Dans ce texte, on décrit un algorithme calculant, pour une courbe lisse et connexe sur un corps et un faisceau localement constant de groupes abéliens de torsion inversible dans , le premièr groupe de cohomologie étale et le premièr groupe de cohomologie étale à support propre comme ensembles de torseurs.
La complexité arithmétique de cet algorithme est exponentielle en , , et , où est le genre arithmétique de la complétion normale de sur , est le genre arithmétique de la complétion normale de la courbe répresentant le faisceau , et est le degré de sur .
L’algorithme passe par le calcul d’un schéma en groupoïdes classifiant les -torseurs étales avec quelques structures additionnelles rigidifiantes.
Revised:
Accepted:
Published online:
Keywords: Algebraic geometry, Algorithm, Curves, Étale cohomology
@article{JTNB_2020__32_2_311_0, author = {Jin, Jinbi}, title = {Computation of \'etale cohomology on curves in single exponential time}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {311--354}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {32}, number = {2}, year = {2020}, doi = {10.5802/jtnb.1124}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jtnb.1124/} }
TY - JOUR AU - Jin, Jinbi TI - Computation of étale cohomology on curves in single exponential time JO - Journal de théorie des nombres de Bordeaux PY - 2020 SP - 311 EP - 354 VL - 32 IS - 2 PB - Société Arithmétique de Bordeaux UR - http://archive.numdam.org/articles/10.5802/jtnb.1124/ DO - 10.5802/jtnb.1124 LA - en ID - JTNB_2020__32_2_311_0 ER -
%0 Journal Article %A Jin, Jinbi %T Computation of étale cohomology on curves in single exponential time %J Journal de théorie des nombres de Bordeaux %D 2020 %P 311-354 %V 32 %N 2 %I Société Arithmétique de Bordeaux %U http://archive.numdam.org/articles/10.5802/jtnb.1124/ %R 10.5802/jtnb.1124 %G en %F JTNB_2020__32_2_311_0
Jin, Jinbi. Computation of étale cohomology on curves in single exponential time. Journal de théorie des nombres de Bordeaux, Volume 32 (2020) no. 2, pp. 311-354. doi : 10.5802/jtnb.1124. http://archive.numdam.org/articles/10.5802/jtnb.1124/
[1] On computing the determinant in small parallel time using a small number of processors, Inf. Process. Lett., Volume 18 (1984), pp. 147-150 | DOI | MR | Zbl
[2] Algorithm of polynomial complexity for factoring polynomials and finding the components of varieties in subexponential time, J. Sov. Math., Volume 34 (1986) no. 4, pp. 1838-1882 (Translated from Zap. Nauchn. Sem. S.-Petersburg, 137:124–188, 1984) | DOI | Zbl
[3] Computational aspects of modular forms and Galois representations (Couveignes, Jean-Marc; Edixhoven, Sebastiaan J., eds.), Annals of Mathematics Studies, 176, Princeton University Press, 2011 | MR | Zbl
[4] Theorie der algebraischen Funktionen einer Veränderlichen, J. Reine Angew. Math. (1882)
[5] Cohomologie étale, Lecture Notes in Mathematics, 569, Springer, 1977 | Zbl
[6] Le déterminant de la cohomologie, Current trends in arithmetical algebraic geometry (Contemporary Mathematics), Volume 67, American Mathematical Society, 1987, pp. 93-177 | DOI | Zbl
[7] The membership problem for unmixed polynomial ideals is solvable in single exponential time, Discrete Appl. Math., Volume 33 (1991), pp. 73-94 | DOI | MR | Zbl
[8] On arithmetic and the discrete logarithm problem in class groups of curves, 2008 (Habilitation thesis) | Zbl
[9] Un foncteur norme, Bull. Soc. Math. Fr., Volume 126 (1998), pp. 1-49 | DOI | Numdam | MR | Zbl
[10] Étale cohomology theory, Nankai Tracts in Mathematics, 14, World Scientific, 2015 | Zbl
[11] Algebraic geometry I. Schemes. With examples and exercises, Advanced Lectures in Mathematics, Vieweg+Teubner, 2010 | DOI | Zbl
[12] Éléments de Géométrie Algébrique II. Etude globale élémentaire de quelques classes de morphismes, Publ. Math., Inst. Hautes Étud. Sci., Volume 8 (1961), pp. 5-222 | Numdam
[13] Revêtements étales et groupe fondamental (SGA1), Lecture Notes in Mathematics, 224, Springer, 1971
[14] Counting points on hyperelliptic curves in average polynomial time, Ann. Math., Volume 179 (2014) no. 2, pp. 783-803 | DOI | MR | Zbl
[15] Computing Riemann–Roch spaces in algebraic function fields and related topics, J. Symb. Comput., Volume 33 (2002) no. 4, pp. 425-445 | DOI | MR | Zbl
[16] Polynomial-time reductions from multivariate to bi- and univariate integral polynomial factorization, SIAM J. Comput., Volume 14 (1985) no. 2, pp. 469-489 | DOI | MR | Zbl
[17] Counting points on hyperelliptic curves using Monsky–Washnitzer cohomology, J. Ramanujan Math. Soc., Volume 16 (2001) no. 4, pp. 323-338 | MR | Zbl
[18] Asymptotically fast group operations on Jacobians of general curves (2004) (https://arxiv.org/abs/math/0409209v2) | Zbl
[19] Counting points on varieties over finite fields of small characteristic, Algorithmic Number Theory (Mathematical Sciences Research Institute Publications), Volume 44, Cambridge University Press, 2008 | MR
[20] Galois representations arising from p-divisible groups, Ph. D. Thesis, Harvard University (2000)
[21] Calculabilité de la cohomologie étale modulo , Algebra Number Theory, Volume 9 (2015) no. 7, pp. 1647-1739 | DOI | Zbl
[22] Computing Néron–Severi groups and cycle class groups, Compos. Math., Volume 151 (2015) no. 4, pp. 713-734 | DOI | Zbl
[23] Stacks Project, 2014 (http://stacks.math.columbia.edu)
Cited by Sources: