There is a natural conjugation action on the set of endomorphism of of fixed degree . The quotient by this action forms the moduli of degree endomorphisms of , denoted . We construct invariant functions on this moduli space coming from the set of multiplier matrices of the periodic points. The basic properties of these functions are demonstrated such as that they are in the ring of regular functions of , methods of computing them, as well as the existence of relations. The main part of the article examines to what extent these invariant functions determine the conjugacy class in the moduli space. Several different types of isospectral families are constructed and a generalization of McMullen’s theorem on the multiplier mapping of dimension 1 is proposed. Finally, this generalization is shown to hold when restricted to several specific families in .
Il existe une action par conjugaison naturelle sur l’ensemble des endomorphismes de de degré fixé L’ensemble quotient pour cette action forme l’espace de modules des endomorphismes de degré de , que l’on note . Nous construisons des fonctions invariantes sur ces espaces de modules, qui proviennent de l’ensemble des matrices des multiplicateurs des points périodiques. Nous démontrons des propriétés élémentaires de ces fonctions, en particulier qu’elles sont régulières sur , et établissons des méthodes pour les calculer, ainsi que l’existence de relations entre elles. Dans la partie principale de l’article, on étudie dans quelle mesure ces fonctions invariantes déterminent la classe de conjugaison dans l’espace de modules. Des types différents des familles isospectrales sont construits, et une généralisation du théorème de McMullen sur l’application multiplicateur de dimension est proposée. Finalement, nous prouvons que le dernier résultat est vrai aussi pour certaines familles spécifiques dans .
Revised:
Accepted:
Published online:
Keywords: dynamical systems, multiplier invariants, moduli space
@article{JTNB_2020__32_2_439_0, author = {Hutz, Benjamin}, title = {Multipliers and invariants of endomorphisms of projective space in dimension greater than 1}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {439--469}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {32}, number = {2}, year = {2020}, doi = {10.5802/jtnb.1129}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jtnb.1129/} }
TY - JOUR AU - Hutz, Benjamin TI - Multipliers and invariants of endomorphisms of projective space in dimension greater than 1 JO - Journal de théorie des nombres de Bordeaux PY - 2020 SP - 439 EP - 469 VL - 32 IS - 2 PB - Société Arithmétique de Bordeaux UR - http://archive.numdam.org/articles/10.5802/jtnb.1129/ DO - 10.5802/jtnb.1129 LA - en ID - JTNB_2020__32_2_439_0 ER -
%0 Journal Article %A Hutz, Benjamin %T Multipliers and invariants of endomorphisms of projective space in dimension greater than 1 %J Journal de théorie des nombres de Bordeaux %D 2020 %P 439-469 %V 32 %N 2 %I Société Arithmétique de Bordeaux %U http://archive.numdam.org/articles/10.5802/jtnb.1129/ %R 10.5802/jtnb.1129 %G en %F JTNB_2020__32_2_439_0
Hutz, Benjamin. Multipliers and invariants of endomorphisms of projective space in dimension greater than 1. Journal de théorie des nombres de Bordeaux, Volume 32 (2020) no. 2, pp. 439-469. doi : 10.5802/jtnb.1129. http://archive.numdam.org/articles/10.5802/jtnb.1129/
[1] Index theorems for meromorphic self-maps of the projective space, Frontiers in complex dynamics (Princeton Mathematical Series), Volume 51, Princeton University Press, 2014, pp. 451-462 | DOI | MR | Zbl
[2] Ideals, Varieties, and Algorithms, Undergraduate Texts in Mathematics, Springer, 1991 | Zbl
[3] The moduli space of quadratic rational maps, J. Am. Math. Soc., Volume 20 (2007) no. 2, pp. 321-355 | DOI | MR | Zbl
[4] Invariant theory for wreath product groups, J. Pure Appl. Algebra, Volume 150 (2000) no. 1, pp. 61-84 | DOI | MR | Zbl
[5] Moduli spaces for dynamical systems with portraits (2018) (https://arxiv.org/abs/1812.09936) | Zbl
[6] The moduli space of rational maps and surjectivity of multiplier representation, Comput. Methods Funct. Theory, Volume 7 (2007) no. 2, pp. 345-360 | DOI | MR | Zbl
[7] The real multiplier coordinate space of the quartic polynomials, Nonlinear analysis and convex analysis, Yokohama Publishers, 2007, pp. 61-69 | Zbl
[8] Symmetrization of rational maps: arithmetic properties and families of Lattès maps of Pk (2016) (https://arxiv.org/abs/1603.04887)
[9] Dynamics of split polynomial maps: uniform bounds for periods and applications, Int. Math. Res. Not., Volume 2017 (2017) no. 1, pp. 213-231 | MR | Zbl
[10] Algebraic independence of multipliers of periodic orbits in the space of rational, Mosc. Math. J., Volume 15 (2015) no. 1, pp. 73-87 | DOI | MR | Zbl
[11] Algebraic independence of multipliers of periodic orbits in the space of polynomial maps of one variable, Ergodic Theory Dyn. Syst., Volume 36 (2016) no. 4, pp. 1156-1166 | DOI | MR | Zbl
[12] Un théorème de point fixe pour les enomorphismes de l’espace projectif avec des applications aux feuilletages algébriques, Bull. Braz. Math. Soc. (N.S.), Volume 35 (2004) no. 3, pp. 345-362 | DOI | MR | Zbl
[13] Semicompleteness of homogeneous quadratic vector fields, Ann. Inst. Fourier, Volume 56 (2006) no. 5, pp. 1583-1615 | DOI | Numdam | MR | Zbl
[14] Quadratic differential equations in three variables without multivalued solutions: Part I, SIGMA, Symmetry Integrability Geom. Methods Appl., Volume 14 (2018), 122, p. 46 | MR | Zbl
[15] On the multipliers at fixed points of self-maps of the projective plane (2019) (https://arxiv.org/abs/1902.04433) | Zbl
[16] Dynatomic cycles for morphisms of projective varieties, New York J. Math., Volume 16 (2010), pp. 125-159 | MR | Zbl
[17] Multiplier spectra and the moduli space of degree 3 morphisms on , JP J. Algebra Number Theory Appl., Volume 29 (2013) no. 2, pp. 189-206 | MR | Zbl
[18] Rigidity and height bounds for certain post-critically finite endomorphisms of projective space, Can. J. Math., Volume 68 (2016) no. 3, pp. 625-654 | DOI | MR | Zbl
[19] The space of morphisms on projective space, Acta Arith., Volume 146 (2011) no. 1, pp. 13-31 | DOI | MR | Zbl
[20] The McMullen map in positive characteristic (2013) (https://arxiv.org/abs/1304.2804)
[21] Moduli spaces for families of rational maps on , J. Number Theory, Volume 127 (2009) no. 7, pp. 1623-1663 | DOI | MR | Zbl
[22] Families of rational maps and iterative root-finding algorithms, Ann. Math., Volume 125 (1987), pp. 467-493 | DOI | MR | Zbl
[23] Geometry and dynamics of quadratic rational maps, Exp. Math., Volume 2 (1993) no. 1, pp. 37-83 | DOI | MR | Zbl
[24] Complex Dynamics in One Variable, Annals of Mathematics Studies, 160, Princeton University Press, 2006 | Zbl
[25] Dense resultant of composed polynomials: Mixed-mixed case, J. Symb. Comput., Volume 36 (2003) no. 6, pp. 825-834 | DOI | MR | Zbl
[26] Isotriviality is equivalent to potential good reduction for endomorphisms of over function fields, J. Algebra, Volume 322 (2009) no. 9, pp. 3345-3365 | DOI | MR | Zbl
[27] Lattès maps on , J. Math. Pures Appl., Volume 93 (2010) no. 6, pp. 636-650 | DOI | Zbl
[28] The space of rational maps on , Duke Math. J., Volume 94 (1998) no. 1, pp. 41-118 | DOI | Zbl
[29] The arithmetic of dynamical systems, Graduate Texts in Mathematics, 241, Springer, 2007 | MR | Zbl
[30] Moduli spaces and arithmetic dynamics, CRM Monograph Series, 30, American Mathematical Society, 2012 | MR | Zbl
[31] The moduli space of polynomial maps and their fixed-point multipliers, Adv. Math., Volume 322 (2017), pp. 132-185 | DOI | MR | Zbl
[32] Complex dynamical systems on projective spaces, Chaotic Dynamical Systems (Advanced Series in Dynamical Systems), Volume 13, World Scientific, 1993, pp. 120-138 | Zbl
[33] Complex dynamics on projective spaces – index formula for fixed points, Dynamical systems and chaos. Vol. 1: Mathematics, engineering and economics, Volume 1, World Scientific, 1995, pp. 252-259 | Zbl
Cited by Sources: