Given a natural number and a -automatic set of natural numbers, we show that the lower density and upper density of are recursively computable rational numbers and we provide an algorithm for computing these quantities. In addition, we show that for every natural number and every pair of rational numbers with or with there is a -automatic subset of the natural numbers whose lower density and upper density are and respectively, and we show that these are precisely the values that can occur as the lower and upper densities of an automatic set.
Soient un nombre naturel et un ensemble -reconnaissable de nombres naturels. On montre que la densité inférieure et la densité supérieure de sont des nombres rationnels qui sont récursivement calculables, et on donne un algorithme pour les calculer. En outre, on montre que, pour et tels que ou , il existe un sous-ensemble -reconnaissable de tel que la densité inférieure et la densité supérieure sont respectivement égales à et . De plus, on montre que ces valeurs sont précisément celles qui peuvent apparaître comme densités inférieure et supérieure d’un ensemble reconnaissable.
Revised:
Accepted:
Published online:
Keywords: upper density, automatic sets, Cobham’s theorem, formal languages
@article{JTNB_2020__32_2_585_0, author = {Bell, Jason P.}, title = {The upper density of an automatic set is rational}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {585--604}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {32}, number = {2}, year = {2020}, doi = {10.5802/jtnb.1135}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jtnb.1135/} }
TY - JOUR AU - Bell, Jason P. TI - The upper density of an automatic set is rational JO - Journal de théorie des nombres de Bordeaux PY - 2020 SP - 585 EP - 604 VL - 32 IS - 2 PB - Société Arithmétique de Bordeaux UR - http://archive.numdam.org/articles/10.5802/jtnb.1135/ DO - 10.5802/jtnb.1135 LA - en ID - JTNB_2020__32_2_585_0 ER -
%0 Journal Article %A Bell, Jason P. %T The upper density of an automatic set is rational %J Journal de théorie des nombres de Bordeaux %D 2020 %P 585-604 %V 32 %N 2 %I Société Arithmétique de Bordeaux %U http://archive.numdam.org/articles/10.5802/jtnb.1135/ %R 10.5802/jtnb.1135 %G en %F JTNB_2020__32_2_585_0
Bell, Jason P. The upper density of an automatic set is rational. Journal de théorie des nombres de Bordeaux, Volume 32 (2020) no. 2, pp. 585-604. doi : 10.5802/jtnb.1135. http://archive.numdam.org/articles/10.5802/jtnb.1135/
[1] Automatic sequences. Theory, applications, generalizations, Cambridge University Press, 2003 | Zbl
[2] Logarithmic frequency in morphic sequences, J. Théor. Nombres Bordeaux, Volume 20 (2008) no. 2, pp. 227-241 | DOI | Numdam | MR | Zbl
[3] The algebraic theory of context-free languages, Computer programming and formal systems (Studies in Logic and the Foundations of Mathematics), North-Holland, 1963, pp. 118-161 | DOI | Zbl
[4] Uniform tag sequences, Math. Syst. Theory, Volume 6 (1972), pp. 164-192 | DOI | MR | Zbl
[5] On th roots of stochastic matrices, Linear Algebra Appl., Volume 435 (2011) no. 3, pp. 448-463 | DOI | Zbl
[6] On the characteristic roots of matrices with nonnegative elements, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 15 (1951), pp. 361-383 | MR | Zbl
[7] A note on the density of inherently ambiguous context-free languages, Acta Inf., Volume 14 (1980) no. 3, pp. 295-298 | DOI | MR | Zbl
[8] Factoring polynomials with rational coefficients, Math. Ann., Volume 261 (1982) no. 4, pp. 515-534 | DOI | MR | Zbl
[9] Algebraic Combinatorics on Words, Encyclopedia of Mathematics and Its Applications, 90, Cambridge University Press, 2002 | MR | Zbl
[10] The critical exponent is computable for automatic sequences, Int. J. Found. Comput. Sci., Volume 23 (2012) no. 8, pp. 1611-1626 | DOI | MR | Zbl
Cited by Sources: