Soit
Let
Révisé le :
Accepté le :
Publié le :
Mots-clés : Ordered factorizations
@article{JTNB_2021__33_2_583_0, author = {Lebowitz-Lockard, Noah}, title = {The distribution of numbers with many ordered factorizations}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {583--606}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {33}, number = {2}, year = {2021}, doi = {10.5802/jtnb.1170}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jtnb.1170/} }
TY - JOUR AU - Lebowitz-Lockard, Noah TI - The distribution of numbers with many ordered factorizations JO - Journal de théorie des nombres de Bordeaux PY - 2021 SP - 583 EP - 606 VL - 33 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://www.numdam.org/articles/10.5802/jtnb.1170/ DO - 10.5802/jtnb.1170 LA - en ID - JTNB_2021__33_2_583_0 ER -
%0 Journal Article %A Lebowitz-Lockard, Noah %T The distribution of numbers with many ordered factorizations %J Journal de théorie des nombres de Bordeaux %D 2021 %P 583-606 %V 33 %N 2 %I Société Arithmétique de Bordeaux %U https://www.numdam.org/articles/10.5802/jtnb.1170/ %R 10.5802/jtnb.1170 %G en %F JTNB_2021__33_2_583_0
Lebowitz-Lockard, Noah. The distribution of numbers with many ordered factorizations. Journal de théorie des nombres de Bordeaux, Tome 33 (2021) no. 2, pp. 583-606. doi : 10.5802/jtnb.1170. https://www.numdam.org/articles/10.5802/jtnb.1170/
[1] On a problem of Oppenheim concerning ‘Factorisatio Numerorum’, J. Number Theory, Volume 17 (1983) no. 1, pp. 1-28 | DOI | MR | Zbl
[2] Grandes valeurs et nombres champions de la fonction arithmétique de Kalmár, J. Number Theory, Volume 128 (2008) no. 6, pp. 1676-1716 | DOI | Zbl
[3] On some asymptotic formulas in the theory of the ‘Factorisatio Numeroum’, Ann. Math., Volume 42 (1941), pp. 989-993 (corrigendum in ibid. 44, p. 647-651) | DOI | Zbl
[4] An asymptotic formula for extended Eulerian numbers, Duke Math. J., Volume 41 (1974) no. 1, pp. 161-175 | MR | Zbl
[5] Grandes valeurs du nombre de factorisations d’un entier en produit ordonné de facteurs premiers, Ramanujan J., Volume 14 (2007) no. 2, pp. 277-304 | DOI | Zbl
[6] On the number of prime factors of an integer, Duke Math. J., Volume 56 (1988) no. 3, pp. 471-501 | MR | Zbl
[7] A problem in ‘Factorisatio Numerorum’, Acta Arith., Volume 2 (1936), pp. 134-144 | DOI | Zbl
[8] Distribution of the number of factors in random ordered factorizations of integers, J. Number Theory, Volume 81 (2000) no. 1, pp. 61-92 | DOI | MR | Zbl
[9] On Kalmár’s problem in ‘Factorisatio Numerorum’. II, Proc. Phys.-Math. Soc. Japan, III. Ser., Volume 23 (1941), pp. 767-774 | MR | Zbl
[10] On factorizations into coprime parts (2021) (to appear in Int. J. Number Theory) | DOI | Zbl
[11] Über die mittlere Anzahl der Produktdarstellungen der Zahlen, erste Mitteilung, Acta Litt. Sci. Szeged, Volume 5 (1931), pp. 95-107 | Zbl
[12] On the maximal order of numbers in the ‘Factorisatio Numerorum’ problem, J. Number Theory, Volume 124 (2007) no. 2, pp. 470-490 | DOI | MR | Zbl
[13] Ordered factorizations for integers and arithmetical semigroups, Advances in Number Theory (Kingston, Ontario, 1991), Clarendon Press, 1993, pp. 151-165 | Zbl
[14] On ordered factorizations into distinct parts, Proc. Amer. Math. Soc., Volume 148 (2020) no. 4, pp. 1447-1453 | DOI | MR | Zbl
[15] How often is Euler’s totient a perfect power?, J. Number Theory, Volume 197 (2019), pp. 1-12 | DOI | MR | Zbl
[16] The distribution of numbers with many factorizations (2021) (to appear in Math. Z.) | DOI
[17] On the distribution of round numbers, Number Theory Proceedings, Ootacamund, India, 1984 (Lecture Notes in Mathematics), Volume 1122, Springer, 1985, pp. 173-200 | MR | Zbl
[18] Introduction to Analytic and Probabilistic Number Theory, Graduate Studies in Mathematics, 163, American Mathematical Society, 2015 | MR | Zbl
[19] Factorisatio numerorum with constraints, J. Number Theory, Volume 45 (1993) no. 2, pp. 186-199 | DOI | MR | Zbl
Cité par Sources :