Let be the number of ordered factorizations of into numbers larger than . We find precise bounds on the positive moments of . We use these results to estimate the number of satisfying for all positive . In addition, let and be the number of ordered factorizations of into distinct numbers larger than and primes, respectively. We also bound the positive moments of and from below.
Soit le nombre de factorisations de en produit ordonné de facteurs plus grands que . On trouve des bornes précises pour les moments positifs de . On utilise ces résultats pour estimer le nombre de tels que pour tous les positifs. En outre, soient et les nombres de factorisations de en produit ordonné de facteurs distincts plus grands que et en produit ordonné de facteurs premiers respectivement. On donne des bornes inférieures pour les moments positifs de et .
Revised:
Accepted:
Published online:
Keywords: Ordered factorizations
@article{JTNB_2021__33_2_583_0, author = {Lebowitz-Lockard, Noah}, title = {The distribution of numbers with many ordered factorizations}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {583--606}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {33}, number = {2}, year = {2021}, doi = {10.5802/jtnb.1170}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jtnb.1170/} }
TY - JOUR AU - Lebowitz-Lockard, Noah TI - The distribution of numbers with many ordered factorizations JO - Journal de théorie des nombres de Bordeaux PY - 2021 SP - 583 EP - 606 VL - 33 IS - 2 PB - Société Arithmétique de Bordeaux UR - http://archive.numdam.org/articles/10.5802/jtnb.1170/ DO - 10.5802/jtnb.1170 LA - en ID - JTNB_2021__33_2_583_0 ER -
%0 Journal Article %A Lebowitz-Lockard, Noah %T The distribution of numbers with many ordered factorizations %J Journal de théorie des nombres de Bordeaux %D 2021 %P 583-606 %V 33 %N 2 %I Société Arithmétique de Bordeaux %U http://archive.numdam.org/articles/10.5802/jtnb.1170/ %R 10.5802/jtnb.1170 %G en %F JTNB_2021__33_2_583_0
Lebowitz-Lockard, Noah. The distribution of numbers with many ordered factorizations. Journal de théorie des nombres de Bordeaux, Volume 33 (2021) no. 2, pp. 583-606. doi : 10.5802/jtnb.1170. http://archive.numdam.org/articles/10.5802/jtnb.1170/
[1] On a problem of Oppenheim concerning ‘Factorisatio Numerorum’, J. Number Theory, Volume 17 (1983) no. 1, pp. 1-28 | DOI | MR | Zbl
[2] Grandes valeurs et nombres champions de la fonction arithmétique de Kalmár, J. Number Theory, Volume 128 (2008) no. 6, pp. 1676-1716 | DOI | Zbl
[3] On some asymptotic formulas in the theory of the ‘Factorisatio Numeroum’, Ann. Math., Volume 42 (1941), pp. 989-993 (corrigendum in ibid. 44, p. 647-651) | DOI | Zbl
[4] An asymptotic formula for extended Eulerian numbers, Duke Math. J., Volume 41 (1974) no. 1, pp. 161-175 | MR | Zbl
[5] Grandes valeurs du nombre de factorisations d’un entier en produit ordonné de facteurs premiers, Ramanujan J., Volume 14 (2007) no. 2, pp. 277-304 | DOI | Zbl
[6] On the number of prime factors of an integer, Duke Math. J., Volume 56 (1988) no. 3, pp. 471-501 | MR | Zbl
[7] A problem in ‘Factorisatio Numerorum’, Acta Arith., Volume 2 (1936), pp. 134-144 | DOI | Zbl
[8] Distribution of the number of factors in random ordered factorizations of integers, J. Number Theory, Volume 81 (2000) no. 1, pp. 61-92 | DOI | MR | Zbl
[9] On Kalmár’s problem in ‘Factorisatio Numerorum’. II, Proc. Phys.-Math. Soc. Japan, III. Ser., Volume 23 (1941), pp. 767-774 | MR | Zbl
[10] On factorizations into coprime parts (2021) (to appear in Int. J. Number Theory) | DOI | Zbl
[11] Über die mittlere Anzahl der Produktdarstellungen der Zahlen, erste Mitteilung, Acta Litt. Sci. Szeged, Volume 5 (1931), pp. 95-107 | Zbl
[12] On the maximal order of numbers in the ‘Factorisatio Numerorum’ problem, J. Number Theory, Volume 124 (2007) no. 2, pp. 470-490 | DOI | MR | Zbl
[13] Ordered factorizations for integers and arithmetical semigroups, Advances in Number Theory (Kingston, Ontario, 1991), Clarendon Press, 1993, pp. 151-165 | Zbl
[14] On ordered factorizations into distinct parts, Proc. Amer. Math. Soc., Volume 148 (2020) no. 4, pp. 1447-1453 | DOI | MR | Zbl
[15] How often is Euler’s totient a perfect power?, J. Number Theory, Volume 197 (2019), pp. 1-12 | DOI | MR | Zbl
[16] The distribution of numbers with many factorizations (2021) (to appear in Math. Z.) | DOI
[17] On the distribution of round numbers, Number Theory Proceedings, Ootacamund, India, 1984 (Lecture Notes in Mathematics), Volume 1122, Springer, 1985, pp. 173-200 | MR | Zbl
[18] Introduction to Analytic and Probabilistic Number Theory, Graduate Studies in Mathematics, 163, American Mathematical Society, 2015 | MR | Zbl
[19] Factorisatio numerorum with constraints, J. Number Theory, Volume 45 (1993) no. 2, pp. 186-199 | DOI | MR | Zbl
Cited by Sources: