In a recent work of Darmon, Pozzi and Vonk, the authors consider a particular -adic family of Hilbert–Eisenstein series associated with an odd character of the narrow ideal class group of a real quadratic field and compute the first derivative of a certain one-variable twisted triple product -adic -series attached to and an elliptic newform of weight on . In this paper, we generalize their construction to include the cyclotomic variable and thus obtain a two-variable twisted triple product -adic -series. Moreover, when is associated with an elliptic curve over , we prove that the first derivative of this -adic -series along the weight direction is a product of the -adic logarithm of a Stark–Heegner point of over introduced by Darmon and the cyclotomic -adic -function for .
Dans un travail récent de Darmon, Pozzi et Vonk, les auteurs considèrent une famille -adique de séries d’Eisenstein–Hilbert associées à un caractère impair du groupe de classes d’idéaux au sens restreint d’un corps quadratique réel . Ils calculent la dérivée première d’une certaine série -adique à une variable d’un produit triple tordu attachée à et à une forme elliptique nouvelle de poids sur . Dans cet article, nous généralisons leur construction afin de prendre en compte la variable cyclotomique, et obtenons ainsi une série -adique à deux variables du produit triple tordu. De plus, quand est associée à une courbe elliptique sur , nous prouvons que la dérivée première de cette série -adique par rapport au poids est le produit du logarithme -adique d’un point de Stark–Heegner de sur introduit par Darmon et de la fonction -adique cyclotomique de .
Revised:
Accepted:
Published online:
Keywords: $p$-adic $L$-functions, Stark-Heegner points, Hida families
@article{JTNB_2021__33_3.2_887_0, author = {Hsieh, Ming-Lun and Yamana, Shunsuke}, title = {Restriction of {Eisenstein} series and {Stark{\textendash}Heegner} points}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {887--944}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {33}, number = {3.2}, year = {2021}, doi = {10.5802/jtnb.1182}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jtnb.1182/} }
TY - JOUR AU - Hsieh, Ming-Lun AU - Yamana, Shunsuke TI - Restriction of Eisenstein series and Stark–Heegner points JO - Journal de théorie des nombres de Bordeaux PY - 2021 SP - 887 EP - 944 VL - 33 IS - 3.2 PB - Société Arithmétique de Bordeaux UR - http://archive.numdam.org/articles/10.5802/jtnb.1182/ DO - 10.5802/jtnb.1182 LA - en ID - JTNB_2021__33_3.2_887_0 ER -
%0 Journal Article %A Hsieh, Ming-Lun %A Yamana, Shunsuke %T Restriction of Eisenstein series and Stark–Heegner points %J Journal de théorie des nombres de Bordeaux %D 2021 %P 887-944 %V 33 %N 3.2 %I Société Arithmétique de Bordeaux %U http://archive.numdam.org/articles/10.5802/jtnb.1182/ %R 10.5802/jtnb.1182 %G en %F JTNB_2021__33_3.2_887_0
Hsieh, Ming-Lun; Yamana, Shunsuke. Restriction of Eisenstein series and Stark–Heegner points. Journal de théorie des nombres de Bordeaux, Volume 33 (2021) no. 3.2, pp. 887-944. doi : 10.5802/jtnb.1182. http://archive.numdam.org/articles/10.5802/jtnb.1182/
[1] The rationality of Stark-Heegner points over genus fields of real quadratic fields, Ann. Math., Volume 170 (2009) no. 1, pp. 343-370 | DOI | MR | Zbl
[2] Twisted triple product -adic -functions and Hirzebruch-Zagier cycles, J. Inst. Math. Jussieu, Volume 19 (2020) no. 6, pp. 1947-1992 | DOI | MR | Zbl
[3] Automorphic Forms and Representations, Cambridge Studies in Advanced Mathematics 55, Cambridge University Press, 1998
[4] On some results of Atkin and Lehner, Math. Ann., Volume 201 (1973), pp. 301-314 | DOI | MR | Zbl
[5] On primitive -adic Rankin-Selberg -functions, Development of Iwasawa theory - The Centennial of K. Iwasawa’s Birth (Advanced Studies in Pure Mathematics), Volume 86, 2020 no. 11, pp. 195-242 | DOI | Zbl
[6] Integration on and arithmetic applications, Ann. Math., Volume 154 (2001) no. 3, pp. 589-639 | DOI | MR | Zbl
[7] Elliptic units for real quadratic fields, Ann. Math., Volume 163 (2006) no. 1, pp. 301-346 | DOI | MR | Zbl
[8] Diagonal restrictions of -adic Eisenstein families, Math. Ann., Volume 379 (2021) no. 1-2, pp. 503-548 | DOI | MR | Zbl
[9] -adic -functions and -adic periods of modular forms, Inventiones mathematiace, Volume 111 (1993), pp. 407-447 | DOI | MR | Zbl
[10] Congruence of cusp forms and special values of their zeta functions, Invent. Math., Volume 63 (1981) no. 2, pp. 225-261 | DOI | MR
[11] Modules of congruence of Hecke algebras and -functions associated with cusp forms, Am. J. Math., Volume 110 (1988) no. 2, pp. 323-382 | DOI | MR | Zbl
[12] On -adic Hecke algebras for GL(2) over totally real fields, Ann. Math., Volume 128 (1988), pp. 295-384 | DOI | MR | Zbl
[13] A -adic measure attached to the zeta functions associated with two elliptic modular forms. II, Ann. Inst. Fourier, Volume 38 (1988) no. 3, pp. 1-83 | DOI | MR | Zbl
[14] Elementary Theory of -functions and Eisenstein series, London Mathematical Society Student Texts, 26, Cambridge University Press, 1993 | DOI
[15] Four variable p-adic triple product L-functions and the trivial zero conjecture (2020) (submitted. arXiv:1906.10474)
[16] Hida families and -adic triple product -functions, Am. J. Math., Volume 143 (2021) no. 2, pp. 411-532 | DOI | MR | Zbl
[17] On the construction of twisted triple product -adic -functions, 2017 Thesis (Ph.D.)–Kyoto University
[18] Automorphic Forms on II, Lecture Notes in Mathematics, 278, Springer-Verlag, Berlin and New York, 1972 | DOI
[19] Automorphic Forms on , Lecture Notes in Mathematics, 114, Springer-Verlag, Berlin and New York, 1970 | DOI
[20] Restrictions of Eisenstein series and Rankin-Selberg convolution, Doc. Math., Volume 24 (2019), pp. 1-45 | MR | Zbl
[21] On standard -adic -functions of families of elliptic cusp forms, -adic monodromy and the Birch and Swinnerton-Dyer conjecture (Boston, MA, 1991) (Contemporary Mathematics), Volume 165, American Mathematical Society, 1994, pp. 81-110 | DOI | MR | Zbl
[22] On -functions of elliptic curves and cyclotomic towers, Invent. Math., Volume 75 (1984) no. 3, pp. 409-423 | DOI | MR | Zbl
[23] Large values of newforms on with highly ramified central character, Int. Math. Res. Not. (2016) no. 13, pp. 4103-4131 | DOI | MR | Zbl
[24] On Tunnell’s formula for characters of , Compos. Math., Volume 85 (1993) no. 1, pp. 99-108 | Numdam | MR | Zbl
[25] Some remarks on local newforms for , Journal of Ramanujan Mathematical Society, Volume 17 (2002) no. 2, pp. 115-147 | MR | Zbl
[26] On the periods of modular forms, Math. Ann., Volume 229 (1977), pp. 211-221 | DOI | MR | Zbl
[27] Local -factors and characters of , Am. J. Math., Volume 105 (1983) no. 6, pp. 1277-1307 | DOI | MR
[28] On ordinary -adic representations associated to modular forms, Inventiones mathematiace, Volume 94 (1988) no. 3, pp. 529-573 | DOI | MR | Zbl
[29] Modular elliptic curves and Fermat last theorem, Ann. Math., Volume 141 (1995) no. 3, pp. 443-551 | DOI | MR | Zbl
Cited by Sources: