Dans cet article, pour une extension abélienne
In this paper, for a CM abelian extension
Révisé le :
Accepté le :
Publié le :
Mots-clés : Class groups, Fitting ideals
@article{JTNB_2021__33_3.2_971_0, author = {Kurihara, Masato}, title = {Notes on the dual of the ideal class groups of {CM-fields}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {971--996}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {33}, number = {3.2}, year = {2021}, doi = {10.5802/jtnb.1184}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jtnb.1184/} }
TY - JOUR AU - Kurihara, Masato TI - Notes on the dual of the ideal class groups of CM-fields JO - Journal de théorie des nombres de Bordeaux PY - 2021 SP - 971 EP - 996 VL - 33 IS - 3.2 PB - Société Arithmétique de Bordeaux UR - https://www.numdam.org/articles/10.5802/jtnb.1184/ DO - 10.5802/jtnb.1184 LA - en ID - JTNB_2021__33_3.2_971_0 ER -
%0 Journal Article %A Kurihara, Masato %T Notes on the dual of the ideal class groups of CM-fields %J Journal de théorie des nombres de Bordeaux %D 2021 %P 971-996 %V 33 %N 3.2 %I Société Arithmétique de Bordeaux %U https://www.numdam.org/articles/10.5802/jtnb.1184/ %R 10.5802/jtnb.1184 %G en %F JTNB_2021__33_3.2_971_0
Kurihara, Masato. Notes on the dual of the ideal class groups of CM-fields. Journal de théorie des nombres de Bordeaux, Tome 33 (2021) no. 3.2, pp. 971-996. doi : 10.5802/jtnb.1184. https://www.numdam.org/articles/10.5802/jtnb.1184/
[1] An introduction to the equivariant Tamagawa number conjecture: the relation to Stark’s conjecture, Arithmetic of
[2] On derivatives of
[3] Equivariant Weierstrass preparation and values of
[4] On the equivariant Tamagawa number conjecture for Tate motives, Invent. Math., Volume 153 (2003) no. 2, pp. 303-359 | DOI | MR | Zbl
[5] On zeta elements for
[6] On Iwasawa theory, zeta elements for
[7] Valeurs aux entiers négatifs des fonctions zêta et fonctions zêta
[8] On the Brumer–Stark Conjecture (2020) (https://arxiv.org/abs/2010.00657)
[9] Values of abelian
[10] Computing Fitting ideals of Iwasawa modules, Math. Z., Volume 246 (2004) no. 4, pp. 733-767 | DOI | MR | Zbl
[11] Determining Fitting ideals of minus class groups via the equivariant Tamagawa number conjecture, Compos. Math., Volume 143 (2007) no. 6, pp. 1399-1426 | DOI | MR | Zbl
[12] Fitting ideals of
[13] Stickelberger elements, Fitting ideals of class groups of CM fields, and dualisation, Math. Z., Volume 260 (2008) no. 4, pp. 905-930 | DOI | MR | Zbl
[14] The second syzygy of the trivial
[15] An equivariant main conjecture in Iwasawa theory and applications, J. Algebr. Geom., Volume 24 (2015) no. 4, pp. 629-692 | DOI | MR | Zbl
[16] Galois invariants for local units, Q. J. Math, Volume 47 (1996) no. 185, pp. 25-39 | DOI | MR | Zbl
[17] An unconditional proof of the abelian equivariant Iwasawa main conjecture and applications (2020) (https://arxiv.org/abs/2010.03186)
[18] Iwasawa theory and Fitting ideals, J. Reine Angew. Math., Volume 561 (2003), pp. 39-86 | MR | Zbl
[19] On the structure of ideal class groups of CM-fields, Doc. Math., Volume Extra Vol. (2003), pp. 539-563 | MR | Zbl
[20] Rubin-Stark elements and ideal class groups, RIMS Kôkyûroku Bessatsu, Volume B53 (2015), pp. 343-363 | MR | Zbl
[21] Stickelberger ideals and Fitting ideals of class groups for abelian number fields, Math. Ann., Volume 350 (2011) no. 3, pp. 549-575 corrigendum in ibid. 374 (2019), no. 3-4, p. 2083-2088 | DOI | MR | Zbl
[22] On non-abelian Stark-type conjectures, Ann. Inst. Fourier, Volume 61 (2011) no. 6, pp. 2577-2608 | DOI | Numdam | MR | Zbl
[23] On the equivariant Tamagawa number conjecture in tame CM-extensions, Math. Z., Volume 268 (2011) no. 1-2, pp. 1-35 | DOI | MR | Zbl
[24] A Tate sequence for global units, Compos. Math., Volume 102 (1996) no. 2, pp. 147-178 | Numdam | MR | Zbl
[25] Über die Fourierschen Koeffizienten von Modulformen, Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl., Volume 3 (1970), pp. 15-56 | Zbl
[26] The Iwasawa conjecture for totally real fields, Ann. Math., Volume 131 (1990) no. 3, pp. 493-540 | DOI | MR | Zbl
- Fitting ideals and various notions of equivalence for modules, manuscripta mathematica, Volume 173 (2024) no. 1-2, p. 259 | DOI:10.1007/s00229-022-01448-1
- Fitting ideals of class groups for CM abelian extensions, Algebra Number Theory, Volume 17 (2023) no. 11, p. 1901 | DOI:10.2140/ant.2023.17.1901
Cité par 2 documents. Sources : Crossref