In this paper, for a CM abelian extension of number fields, we propose a conjecture which describes completely the Fitting ideal of the minus part of the Pontryagin dual of the -ray class group of for a set of primes as a -module. Here, we emphasize that we consider the full class group, and do not throw away the ramifying primes (the object we study is not the quotient of the class group by the subgroup generated by the classes of ramifying primes). We prove that our conjecture is a consequence of the equivariant Tamagawa number conjecture, and also prove the Iwasawa theoretic version of our conjecture.
Dans cet article, pour une extension abélienne de corps de nombres de type CM, nous proposons une conjecture qui décrit complètement l’idéal de Fitting de la partie moins du dual de Pontryagin du groupe de classes de rayon de , pour un ensemble d’idéaux premiers, comme -module. Nous soulignons que nous considérons ici le groupe de classes au sens propre, sans laisser de côté les idéaux ramifiés (l’objet que nous étudions n’est pas le quotient du groupe de classes par le sous-groupe engendré par les classes des idéaux premiers ramifiés). Nous prouvons que notre conjecture est une conséquence de la conjecture de nombres de Tamagawa équivariante, et prouvons la version de notre conjecture en théorie d’Iwasawa.
Revised:
Accepted:
Published online:
Keywords: Class groups, Fitting ideals
@article{JTNB_2021__33_3.2_971_0, author = {Kurihara, Masato}, title = {Notes on the dual of the ideal class groups of {CM-fields}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {971--996}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {33}, number = {3.2}, year = {2021}, doi = {10.5802/jtnb.1184}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jtnb.1184/} }
TY - JOUR AU - Kurihara, Masato TI - Notes on the dual of the ideal class groups of CM-fields JO - Journal de théorie des nombres de Bordeaux PY - 2021 SP - 971 EP - 996 VL - 33 IS - 3.2 PB - Société Arithmétique de Bordeaux UR - http://archive.numdam.org/articles/10.5802/jtnb.1184/ DO - 10.5802/jtnb.1184 LA - en ID - JTNB_2021__33_3.2_971_0 ER -
%0 Journal Article %A Kurihara, Masato %T Notes on the dual of the ideal class groups of CM-fields %J Journal de théorie des nombres de Bordeaux %D 2021 %P 971-996 %V 33 %N 3.2 %I Société Arithmétique de Bordeaux %U http://archive.numdam.org/articles/10.5802/jtnb.1184/ %R 10.5802/jtnb.1184 %G en %F JTNB_2021__33_3.2_971_0
Kurihara, Masato. Notes on the dual of the ideal class groups of CM-fields. Journal de théorie des nombres de Bordeaux, Volume 33 (2021) no. 3.2, pp. 971-996. doi : 10.5802/jtnb.1184. http://archive.numdam.org/articles/10.5802/jtnb.1184/
[1] An introduction to the equivariant Tamagawa number conjecture: the relation to Stark’s conjecture, Arithmetic of -functions (IAS/Park City Mathematics Series), Volume 18, American Mathematical Society, 2011, pp. 127-152 | MR | Zbl
[2] On derivatives of -adic -series at , J. Reine Angew. Math., Volume 762 (2020), pp. 53-104 | DOI | MR | Zbl
[3] Equivariant Weierstrass preparation and values of -functions at negative integers, Doc. Math., Volume Extra Vol. (2003), pp. 157-185 | MR
[4] On the equivariant Tamagawa number conjecture for Tate motives, Invent. Math., Volume 153 (2003) no. 2, pp. 303-359 | DOI | MR | Zbl
[5] On zeta elements for , Doc. Math., Volume 21 (2016), pp. 555-626 | MR
[6] On Iwasawa theory, zeta elements for and the equivariant Tamagawa number conjecture, Algebra Number Theory, Volume 11 (2017) no. 7, pp. 1527-1571 | DOI | MR | Zbl
[7] Valeurs aux entiers négatifs des fonctions zêta et fonctions zêta -adiques, Invent. Math., Volume 51 (1979), pp. 29-59 | DOI | MR | Zbl
[8] On the Brumer–Stark Conjecture (2020) (https://arxiv.org/abs/2010.00657)
[9] Values of abelian -functions at negative integers over totally real fields, Invent. Math., Volume 59 (1979), pp. 227-286 | DOI | MR | Zbl
[10] Computing Fitting ideals of Iwasawa modules, Math. Z., Volume 246 (2004) no. 4, pp. 733-767 | DOI | MR | Zbl
[11] Determining Fitting ideals of minus class groups via the equivariant Tamagawa number conjecture, Compos. Math., Volume 143 (2007) no. 6, pp. 1399-1426 | DOI | MR | Zbl
[12] Fitting ideals of -ramified Iwasawa modules over totally real fields (https://arxiv.org/abs/2006.05667, to appear in Selecta Math.)
[13] Stickelberger elements, Fitting ideals of class groups of CM fields, and dualisation, Math. Z., Volume 260 (2008) no. 4, pp. 905-930 | DOI | MR | Zbl
[14] The second syzygy of the trivial -module, and an equivariant main conjecture, Development of Iwasawa Theory – the Centennial of K. Iwasawa’s Birth (Advanced Studies in Pure Mathematics), Volume 86, Mathematical Society of Japan, 2020, pp. 317-349 | DOI | Zbl
[15] An equivariant main conjecture in Iwasawa theory and applications, J. Algebr. Geom., Volume 24 (2015) no. 4, pp. 629-692 | DOI | MR | Zbl
[16] Galois invariants for local units, Q. J. Math, Volume 47 (1996) no. 185, pp. 25-39 | DOI | MR | Zbl
[17] An unconditional proof of the abelian equivariant Iwasawa main conjecture and applications (2020) (https://arxiv.org/abs/2010.03186)
[18] Iwasawa theory and Fitting ideals, J. Reine Angew. Math., Volume 561 (2003), pp. 39-86 | MR | Zbl
[19] On the structure of ideal class groups of CM-fields, Doc. Math., Volume Extra Vol. (2003), pp. 539-563 | MR | Zbl
[20] Rubin-Stark elements and ideal class groups, RIMS Kôkyûroku Bessatsu, Volume B53 (2015), pp. 343-363 | MR | Zbl
[21] Stickelberger ideals and Fitting ideals of class groups for abelian number fields, Math. Ann., Volume 350 (2011) no. 3, pp. 549-575 corrigendum in ibid. 374 (2019), no. 3-4, p. 2083-2088 | DOI | MR | Zbl
[22] On non-abelian Stark-type conjectures, Ann. Inst. Fourier, Volume 61 (2011) no. 6, pp. 2577-2608 | DOI | Numdam | MR | Zbl
[23] On the equivariant Tamagawa number conjecture in tame CM-extensions, Math. Z., Volume 268 (2011) no. 1-2, pp. 1-35 | DOI | MR | Zbl
[24] A Tate sequence for global units, Compos. Math., Volume 102 (1996) no. 2, pp. 147-178 | Numdam | MR | Zbl
[25] Über die Fourierschen Koeffizienten von Modulformen, Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl., Volume 3 (1970), pp. 15-56 | Zbl
[26] The Iwasawa conjecture for totally real fields, Ann. Math., Volume 131 (1990) no. 3, pp. 493-540 | DOI | MR | Zbl
Cited by Sources: