In this paper, we define a Kolyvagin system of rank and develop the theory of Kolyvagin systems of rank . In particular, we prove that the module of Kolyvagin systems of rank is free of rank one under standard assumptions.
Dans cet article, nous définissons un système Kolyvagin de rang 0 et développons la théorie des systèmes Kolyvagin de rang 0. En particulier, nous prouvons que le module des systèmes Kolyvagin de rang 0 est libre de rang un sous les hypothèses standard.
Revised:
Accepted:
Published online:
Mots-clés : Kolyvagin system, Selmer group
@article{JTNB_2021__33_3.2_1077_0, author = {Sakamoto, Ryotaro}, title = {On the theory of {Kolyvagin} systems of rank $0$}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {1077--1102}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {33}, number = {3.2}, year = {2021}, doi = {10.5802/jtnb.1189}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jtnb.1189/} }
TY - JOUR AU - Sakamoto, Ryotaro TI - On the theory of Kolyvagin systems of rank $0$ JO - Journal de théorie des nombres de Bordeaux PY - 2021 SP - 1077 EP - 1102 VL - 33 IS - 3.2 PB - Société Arithmétique de Bordeaux UR - http://archive.numdam.org/articles/10.5802/jtnb.1189/ DO - 10.5802/jtnb.1189 LA - en ID - JTNB_2021__33_3.2_1077_0 ER -
%0 Journal Article %A Sakamoto, Ryotaro %T On the theory of Kolyvagin systems of rank $0$ %J Journal de théorie des nombres de Bordeaux %D 2021 %P 1077-1102 %V 33 %N 3.2 %I Société Arithmétique de Bordeaux %U http://archive.numdam.org/articles/10.5802/jtnb.1189/ %R 10.5802/jtnb.1189 %G en %F JTNB_2021__33_3.2_1077_0
Sakamoto, Ryotaro. On the theory of Kolyvagin systems of rank $0$. Journal de théorie des nombres de Bordeaux, Volume 33 (2021) no. 3.2, pp. 1077-1102. doi : 10.5802/jtnb.1189. http://archive.numdam.org/articles/10.5802/jtnb.1189/
[1] On the theory of higher rank Euler, Kolyvagin and Stark systems, II (2018) (https://arxiv.org/abs/1805.08448, submitted)
[2] On the Theory of Higher Rank Euler, Kolyvagin and Stark Systems, Int. Math. Res. Not., Volume 2021 (2021) no. 13, pp. 10118-10206 | DOI | MR
[3] Kolyvagin systems of Stark units, J. Reine Angew. Math., Volume 631 (2009), pp. 85-107 | MR | Zbl
[4] Stark units and the main conjectures for totally real fields, Compos. Math., Volume 145 (2009) no. 5, pp. 1163-1195 | DOI | MR | Zbl
[5] On Euler systems of rank and their Kolyvagin systems, Indiana Univ. Math. J., Volume 59 (2010) no. 4, pp. 1277-1332 | DOI | MR | Zbl
[6] -adic Kolyvagin systems, Int. Math. Res. Not., Volume 2011 (2011) no. 14, pp. 3141-3206 | MR | Zbl
[7] Stickelberger elements and Kolyvagin systems, Nagoya Math. J., Volume 203 (2011), pp. 123-173 | DOI | MR | Zbl
[8] Refined Iwasawa theory and Kolyvagin systems of Gauss sum type, Proc. Lond. Math. Soc., Volume 104 (2012) no. 4, pp. 728-769 | DOI | MR | Zbl
[9] The structure of Selmer groups of elliptic curves and modular symbols, Iwasawa theory 2012 (Contributions in Mathematical and Computational Sciences), Volume 7, Springer, 2012, pp. 317-356 | DOI | Zbl
[10] Refined Iwasawa theory for -adic representations and the structure of Selmer groups, Münster J. Math., Volume 7 (2014) no. 1, pp. 149-223 | MR | Zbl
[11] Kolyvagin systems, Memoirs of the American Mathematical Society, 799, American Mathematical Society, 2004
[12] Controlling Selmer groups in the higher core rank case, J. Théor. Nombres Bordeaux, Volume 28 (2016) no. 1, pp. 145-183 | DOI | Numdam | MR | Zbl
[13] Stark systems over Gorenstein local rings, Algebra Number Theory, Volume 12 (2018) no. 10, pp. 2295-2326 | DOI | MR | Zbl
[14] A higher rank Euler system for over a totally real field (2020) (https://arxiv.org/abs/2002.04871, to appear in Am. J. Math.)
[15] On the theory of higher rank Euler, Kolyvagin and Stark systems: a research announcement, RIMS Kôkyûroku Bessatsu, Volume B83 (2020), pp. 141-159 (Algebraic Number Theory and Related Topics 2017) | MR | Zbl
Cited by Sources: