For a typical example of a complete discrete valuation field of type II in the sense of [12], we determine the graded quotients for all . In the Appendix, we describe the Milnor -groups of a certain local ring by using differential modules, which are related to the theory of syntomic cohomology.
Pour un exemple typique de corps de valuation discrète complet de type II au sens de [12], nous déterminons les quotients gradués pour tout . Dans l’appendice, nous décrivons les -groupes de Milnor d’un certain anneau local à l’aide de modules de différentielles, qui sont liés à la théorie de la cohomologie syntomique.
@article{JTNB_2004__16_2_377_0, author = {Kurihara, Masato}, title = {On the structure of {Milnor} $K$-groups of certain complete discrete valuation fields}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {377--401}, publisher = {Universit\'e Bordeaux 1}, volume = {16}, number = {2}, year = {2004}, doi = {10.5802/jtnb.452}, mrnumber = {2143560}, zbl = {1079.11058}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jtnb.452/} }
TY - JOUR AU - Kurihara, Masato TI - On the structure of Milnor $K$-groups of certain complete discrete valuation fields JO - Journal de théorie des nombres de Bordeaux PY - 2004 SP - 377 EP - 401 VL - 16 IS - 2 PB - Université Bordeaux 1 UR - http://archive.numdam.org/articles/10.5802/jtnb.452/ DO - 10.5802/jtnb.452 LA - en ID - JTNB_2004__16_2_377_0 ER -
%0 Journal Article %A Kurihara, Masato %T On the structure of Milnor $K$-groups of certain complete discrete valuation fields %J Journal de théorie des nombres de Bordeaux %D 2004 %P 377-401 %V 16 %N 2 %I Université Bordeaux 1 %U http://archive.numdam.org/articles/10.5802/jtnb.452/ %R 10.5802/jtnb.452 %G en %F JTNB_2004__16_2_377_0
Kurihara, Masato. On the structure of Milnor $K$-groups of certain complete discrete valuation fields. Journal de théorie des nombres de Bordeaux, Volume 16 (2004) no. 2, pp. 377-401. doi : 10.5802/jtnb.452. http://archive.numdam.org/articles/10.5802/jtnb.452/
[1] S. Bloch, Algebraic -theory and crystalline cohomology. Publ. Math. IHES 47 (1977), 187–268. | Numdam | MR | Zbl
[2] S. Bloch, K. Kato, -adic etale cohomology. Publ. Math. IHES 63 (1986), 107–152. | Numdam | MR | Zbl
[3] M. Demazure, Lectures on -divisible groups. Lecture Notes in Math. 302, Springer (1972). | MR | Zbl
[4] J.-M. Fontaine, W. Messing, -adic periods and -adic étale cohomology. Contemporary Math. 67 (1987), 179–207. | MR | Zbl
[5] J. Graham,Continuous symbols on fields of formal power series, Algebraic K-theory II. Lecture Notes in Math. 342, Springer-Verlag (1973), 474–486. | MR | Zbl
[6] L. Illusie, Complexes de de Rham Witt et cohomologie crystalline. Ann. Sci. Éc. Norm. Super. série t. 12 (1979), 501–661. | Numdam | MR | Zbl
[7] K. Kato, Residue homomorphisms in Milnor -theory, in Galois groups and their representations. Adv. St. in Pure Math. 2 (1983), 153–172. | MR | Zbl
[8] K. Kato, A generalization of local class field theory by using -groups I. J. Fac. Sci. Univ. Tokyo 26 (1979), 303–376, II, ibid 27 (1980), 603–683, III, ibid 29 (1982), 31–43. | MR | Zbl
[9] K. Kato, On -adic vanishing cycles (applications of ideas of Fontaine-Messing). Adv. St. in Pure Math. 10 (1987), 207–251. | MR | Zbl
[10] K. Kato, The explicit reciprocity law and the cohomology of Fontaine-Messing. Bull. Soc. Math. France 119 (1991), 397–441. | Numdam | MR | Zbl
[11] M. Kolster, of non-commutative local rings. J. Algebra 95 (1985), 173–200. | Zbl
[12] M. Kurihara, On two types of complete discrete valuation fields. Compos. Math. 63 (1987), 237–257. | Numdam | MR | Zbl
[13] M. Kurihara, A note on -adic etale cohomology. Proc. Japan Acad. Ser. A 63 (1987), 275–278. | MR | Zbl
[14] M. Kurihara, Abelian extensions of an absolutely unramified local field with general residue field. Invent. math. 93 (1988), 451–480. | MR | Zbl
[15] M. Kurihara, The exponential homomorphisms for the Milnor -groups and an explicit reciprocity law. J. reine angew. Math. 498 (1998), 201–221. | MR | Zbl
[16] J. Nakamura, On the structures of the Milnor -groups of some complete discrete valuation fields. -Theory 19 (2000), 269–309. | MR | Zbl
[17] J. Nakamura, On the Milnor -groups of complete discrete valuation fields. Doc. Math. 5 (2000), 151–200 (electronic). | MR | Zbl
[18] A.N. Parshin, Class field theory and algebraic -theory. Uspekhi Mat. Nauk. 30 no 1 (1975), 253–254, (English transl. in Russian Math. Surveys). | Zbl
[19] J.-P. Serre, Corps locaux ( édition), Hermann, Paris, (1968). | MR | Zbl
[20] T. Tsuji, Syntomic complexes and -adic vanishing cycles. J. reine angew. Math. 472 (1996), 69–138. | MR | Zbl
[21] T. Tsuji, -adic étale cohomology and crystalline cohomology in the semi-stable reduction case. Invent. math. 137 (1999), 233–411. | MR | Zbl
[22] W. Van der Kallen, The of rings with many units. Ann. Sci. Éc. Norm. Sup. série t. 10 (1977), 473–515. | Numdam | MR | Zbl
[23] S.V. Vostokov, Explicit form of the law of reciprocity. Izv. Acad. Nauk. SSSR 13 (1979), 557–588. | Zbl
[24] I. Zhukov, Milnor and topological -groups of multidimensional complete fields. St. Petersburg Math. J. 9 (1998), 69–105. | MR | Zbl
Cited by Sources: