A Klein polyhedron is defined as the convex hull of nonzero lattice points inside an orthant of . It generalizes the concept of continued fraction. In this paper facets and edge stars of vertices of a Klein polyhedron are considered as multidimensional analogs of partial quotients and quantitative characteristics of these “partial quotients”, so called determinants, are defined. It is proved that the facets of all the Klein polyhedra generated by a lattice have uniformly bounded determinants if and only if the facets and the edge stars of the vertices of the Klein polyhedron generated by and related to the positive orthant have uniformly bounded determinants.
Un polyèdre de Klein est défini comme étant l’enveloppe convexe de tous les points non nuls d’un réseau qui se trouvent dans un orthant de l’espace . On généralise à partir de ce concept la notion de la fraction continue. Dans cet article nous considérons les faces et les configurations étoilées, formées des arêtes issues de chaque sommet d’un polyèdre de Klein, comme les analogues multidimensionnels des quotient partiels, et nous définissons des charactéristiques quantitatives de ces “quotients partiels”, qui sont appelés “déterminants". Il est démontré que les faces de tous les polyèdres de Klein engendrés par un réseau ont leurs déterminants uniformément bornés (dans leur ensemble) si, et seulement si, les faces et les étoiles d’arêtes des sommets du polyèdre de Klein, engendrées par et correspondant à l’orthant positif, ont aussi leurs déterminants uniformément bornés.
@article{JTNB_2007__19_1_175_0, author = {German, Oleg N.}, title = {Klein polyhedra and lattices with positive norm minima}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {175--190}, publisher = {Universit\'e Bordeaux 1}, volume = {19}, number = {1}, year = {2007}, doi = {10.5802/jtnb.580}, mrnumber = {2332060}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jtnb.580/} }
TY - JOUR AU - German, Oleg N. TI - Klein polyhedra and lattices with positive norm minima JO - Journal de théorie des nombres de Bordeaux PY - 2007 SP - 175 EP - 190 VL - 19 IS - 1 PB - Université Bordeaux 1 UR - http://archive.numdam.org/articles/10.5802/jtnb.580/ DO - 10.5802/jtnb.580 LA - en ID - JTNB_2007__19_1_175_0 ER -
%0 Journal Article %A German, Oleg N. %T Klein polyhedra and lattices with positive norm minima %J Journal de théorie des nombres de Bordeaux %D 2007 %P 175-190 %V 19 %N 1 %I Université Bordeaux 1 %U http://archive.numdam.org/articles/10.5802/jtnb.580/ %R 10.5802/jtnb.580 %G en %F JTNB_2007__19_1_175_0
German, Oleg N. Klein polyhedra and lattices with positive norm minima. Journal de théorie des nombres de Bordeaux, Volume 19 (2007) no. 1, pp. 175-190. doi : 10.5802/jtnb.580. http://archive.numdam.org/articles/10.5802/jtnb.580/
[1] O. N. German, Klein polyhedra and norm minima of lattices. Doklady Mathematics 406:3 (2006), 38–41. | MR
[2] P. Erdös, P. Gruber, J. Hammer, Lattice Points. Pitman Monographs and Surveys in Pure and Applied Mathematics 39. Longman Scientific & Technical, Harlow (1989). | MR | Zbl
[3] F. Klein, Uber eine geometrische Auffassung der gewohnlichen Kettenbruchentwichlung. Nachr. Ges. Wiss. Gottingen 3 (1895), 357–359.
[4] O. N. German, Sails and norm minima of lattices. Mat. Sb. 196:3 (2005), 31–60; English transl., Russian Acad. Sci. Sb. Math. 196:3 (2005), 337–367. | MR | Zbl
[5] J.–O. Moussafir, Convex hulls of integral points. Zapiski nauch. sem. POMI 256 (2000). | Zbl
[6] V. I. Arnold, Continued fractions. Moscow: Moscow Center of Continuous Mathematical Education (2002).
[7] V. I. Arnold, Preface. Amer. Math. Soc. Transl. 197:2 (1999), ix–xii.
[8] E. I. Korkina, Two–dimensional continued fractions. The simplest examples. Proc. Steklov Math. Inst. RAS 209 (1995), 143–166. | MR | Zbl
[9] T. Bonnesen, W. Fenchel, Theorie der konvexen Körper. Berlin: Springer (1934). | MR | Zbl
[10] B. Grünbaum, Convex polytopes. London, New York, Sydney: Interscience Publ. (1967). | MR | Zbl
[11] P. McMullen, G. C. Shephard, Convex polytopes and the upper bound conjecture. Cambridge (GB): Cambridge University Press (1971). | MR | Zbl
[12] G. Ewald, Combinatorial convexity and algebraic geometry. Sringer–Verlag New York, Inc. (1996). | MR | Zbl
[13] Z. I. Borevich, I. R. Shafarevich, Number theory. NY Academic Press (1966). | MR | Zbl
[14] J. W. S. Cassels, H. P. F. Swinnerton–Dyer, On the product of three homogeneous linear forms and indefinite ternary quadratic forms. Phil. Trans. Royal Soc. London A 248 (1955), 73–96. | MR | Zbl
[15] B. F. Skubenko, Minima of a decomposable cubic form of three variables. Zapiski nauch. sem. LOMI 168 (1988). | Zbl
[16] B. F. Skubenko, Minima of decomposable forms of degree of variables for . Zapiski nauch. sem. LOMI 183 (1990). | Zbl
[17] G. Lachaud, Voiles et Polyèdres de Klein. Act. Sci. Ind., Hermann (2002).
[18] L. Danzer, B. Grünbaum, V. Klee, Helly’s Theorem and its relatives. in Convexity (Proc. Symp. Pure Math. 7) 101–180, AMS, Providence, Rhode Island, 1963. | Zbl
Cited by Sources: