This paper is concerned with non-trivial solvability in -adic integers of systems of additive forms. Assuming that the congruence equation has a solution with we have proved that any system of additive forms of degree with at least variables, has always non-trivial -adic solutions, provided . The assumption of the solubility of the above congruence equation is guaranteed, for example, if .
Cet article étudie l’existence de solutions non triviales en entiers -adiques de systèmes d’équations pour des formes additives. En supposant que l’équation ait une solution telle que , nous montrons qu’un système quelconque de formes additives de degré et d’au moins variables possède toujours des solutions -adiques non-triviales, si . L’hypothèse ci-dessus pour l’existence de solutions non-triviales de l’équation est vérifiée si, par exemple, .
@article{JTNB_2007__19_1_205_0, author = {Godhino, Hemar and Rodrigues, Paulo H. A.}, title = {On ${p}$-adic zeros of systems of diagonal forms restricted by a congruence condition}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {205--219}, publisher = {Universit\'e Bordeaux 1}, volume = {19}, number = {1}, year = {2007}, doi = {10.5802/jtnb.582}, zbl = {1131.11023}, mrnumber = {2332062}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jtnb.582/} }
TY - JOUR AU - Godhino, Hemar AU - Rodrigues, Paulo H. A. TI - On ${p}$-adic zeros of systems of diagonal forms restricted by a congruence condition JO - Journal de théorie des nombres de Bordeaux PY - 2007 SP - 205 EP - 219 VL - 19 IS - 1 PB - Université Bordeaux 1 UR - http://archive.numdam.org/articles/10.5802/jtnb.582/ DO - 10.5802/jtnb.582 LA - en ID - JTNB_2007__19_1_205_0 ER -
%0 Journal Article %A Godhino, Hemar %A Rodrigues, Paulo H. A. %T On ${p}$-adic zeros of systems of diagonal forms restricted by a congruence condition %J Journal de théorie des nombres de Bordeaux %D 2007 %P 205-219 %V 19 %N 1 %I Université Bordeaux 1 %U http://archive.numdam.org/articles/10.5802/jtnb.582/ %R 10.5802/jtnb.582 %G en %F JTNB_2007__19_1_205_0
Godhino, Hemar; Rodrigues, Paulo H. A. On ${p}$-adic zeros of systems of diagonal forms restricted by a congruence condition. Journal de théorie des nombres de Bordeaux, Volume 19 (2007) no. 1, pp. 205-219. doi : 10.5802/jtnb.582. http://archive.numdam.org/articles/10.5802/jtnb.582/
[1] O.D. Atkinson, J. Brüdern, R.J. Cook, Simultaneous additive congruences to a large prime modulus. Mathematika 39 (1) (1992), 1–9. | MR | Zbl
[2] H. Davenport, D.J. Lewis, Simultaneous equations of additive type. Philos. Trans. Roy. Soc. London, Ser. A 264 (1969), 557–595. | MR | Zbl
[3] H. Godinho, P. H. A. Rodrigues, Conditions for the solvability of systems of two and three additive forms over p-adic fields. Proc. of the London Math. Soc. 91 (2005), 545–572. | MR | Zbl
[4] D.J. Lewis, H. Montgomery, On zeros of p-adic forms. Michigan Math. Journal 30 (1983), 83–87. | MR | Zbl
[5] L. Low, J. Pitman, A. Wolff, Simultaneous Diagonal Congruences. J. Number Theory 29 (1988), 31–59. | MR | Zbl
[6] I. D. Meir, Pairs of Additive Congruences to a Large Prime Modulus. J. Number Theory 63 (1997), 132–142. | MR | Zbl
Cited by Sources: