Une légère modification de la démonstration du lemme des cubes de Szemerédi donne le résultat plus précis suivant : si une partie
A slight modification of the proof of Szemerédi’s cube lemma gives that if a set
@article{JTNB_2007__19_1_249_0, author = {S\'andor, Csaba}, title = {Non-degenerate {Hilbert} cubes in random sets}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {249--261}, publisher = {Universit\'e Bordeaux 1}, volume = {19}, number = {1}, year = {2007}, doi = {10.5802/jtnb.585}, zbl = {1126.11014}, mrnumber = {2332065}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jtnb.585/} }
TY - JOUR AU - Sándor, Csaba TI - Non-degenerate Hilbert cubes in random sets JO - Journal de théorie des nombres de Bordeaux PY - 2007 SP - 249 EP - 261 VL - 19 IS - 1 PB - Université Bordeaux 1 UR - https://www.numdam.org/articles/10.5802/jtnb.585/ DO - 10.5802/jtnb.585 LA - en ID - JTNB_2007__19_1_249_0 ER -
Sándor, Csaba. Non-degenerate Hilbert cubes in random sets. Journal de théorie des nombres de Bordeaux, Tome 19 (2007) no. 1, pp. 249-261. doi : 10.5802/jtnb.585. https://www.numdam.org/articles/10.5802/jtnb.585/
[1] N. Alon, J. Spencer, The Probabilistic Method. Wiley-Interscience, Series in Discrete Math. and Optimization, 1992. | MR | Zbl
[2] A. Godbole, S. Janson, N. Locantore, R. Rapoport, Random Sidon Seqence. J. Number Theory 75 (1999), no. 1, 7–22. | MR | Zbl
[3] D. S. Gunderson, V. Rödl, Extremal problems for Affine Cubes of Integers. Combin. Probab. Comput 7 (1998), no. 1, 65–79. | MR | Zbl
[4] R. L. Graham, B. L. Rothchild, J. Spencer, Ramsey Theory. Wiley-Interscience, Series in Discrete Math. and Optimization, 1990. | MR | Zbl
[5] N. Hegyvári, On the dimension of the Hilbert cubes. J. Number Theory 77 (1999), no. 2, 326–330. | MR | Zbl
- Hilbert cubes meet arithmetic sets, Journal of Number Theory, Volume 217 (2020), p. 292 | DOI:10.1016/j.jnt.2020.05.012
- Threshold functions and Poisson convergence for systems of equations in random sets, Mathematische Zeitschrift, Volume 288 (2018) no. 1-2, p. 333 | DOI:10.1007/s00209-017-1891-2
- Threshold functions for systems of equations on random sets, Electronic Notes in Discrete Mathematics, Volume 43 (2013), p. 113 | DOI:10.1016/j.endm.2013.07.019
Cité par 3 documents. Sources : Crossref