La conjecture de Thomas affirme que, pour des polynômes unitaires
n’admet pas de solution non triviale (dans les entiers relatifs) pourvu que
Thomas’ conjecture is, given monic polynomials
has only trivial solutions, provided
@article{JTNB_2007__19_1_289_0, author = {Ziegler, Volker}, title = {Thomas{\textquoteright} conjecture over function fields}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {289--309}, publisher = {Universit\'e Bordeaux 1}, volume = {19}, number = {1}, year = {2007}, doi = {10.5802/jtnb.587}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jtnb.587/} }
TY - JOUR AU - Ziegler, Volker TI - Thomas’ conjecture over function fields JO - Journal de théorie des nombres de Bordeaux PY - 2007 SP - 289 EP - 309 VL - 19 IS - 1 PB - Université Bordeaux 1 UR - https://www.numdam.org/articles/10.5802/jtnb.587/ DO - 10.5802/jtnb.587 LA - en ID - JTNB_2007__19_1_289_0 ER -
Ziegler, Volker. Thomas’ conjecture over function fields. Journal de théorie des nombres de Bordeaux, Tome 19 (2007) no. 1, pp. 289-309. doi : 10.5802/jtnb.587. https://www.numdam.org/articles/10.5802/jtnb.587/
[1] A. Baker, Linear forms in the logarithms of algebraic numbers. I, II, III. Mathematika 13 (1966), 204–216; ibid. 14 (1967), 102–107; ibid. 14 (1967), 220–228. | MR | Zbl
[2] A. Baker, Contributions to the theory of Diophantine equations. I. On the representation of integers by binary forms. Philos. Trans. Roy. Soc. London Ser. A 263 (1967/1968), 173–191, | MR | Zbl
[3] A. Baker, Linear forms in the logarithms of algebraic numbers. IV. Mathematika 15 (1968), 204–216. | MR | Zbl
[4] P. M. Cohn, Algebraic numbers and algebraic functions. Chapman and Hall Mathematics Series. Chapman & Hall, London, 1991. | MR | Zbl
[5] C. Fuchs, V. Ziegler, On a family of Thue equations over function fields. Monatsh. Math. 147 (2006), 11–23. | MR | Zbl
[6] C. Fuchs, V. Ziegler, Thomas’ family of Thue equations over function fields. Quart. J. Math. 57 (2006), 81–91. | Zbl
[7] B. P. Gill, An analogue for algebraic functions of the Thue-Siegel theorem. Ann. of Math. (2) 31(2) (1930), 207–218. | MR
[8] C. Heuberger, On a conjecture of E. Thomas concerning parametrized Thue equations. Acta. Arith. 98 (2001), 375–394. | MR | Zbl
[9] S. Lang, Elliptic curves: Diophantine analysis. Volume 231 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1978. | MR | Zbl
[10] E. Lee, Studies on Diophantine Equations. PhD thesis, Cambridge University, 1992.
[11] G. Lettl, Thue equations over algebraic function fields. Acta Arith. 117(2) (2005), 107–123. | MR | Zbl
[12] R. C. Mason, On Thue’s equation over function fields. J. London Math. Soc. (2) 24(3) (1981), 414–426. | Zbl
[13] R. C. Mason, The hyperelliptic equation over function fields. Math. Proc. Camb. Philos. Soc. 93 (1983), 219–230. | MR | Zbl
[14] R. C. Mason, Diophantine equations over function fields. Volume 96 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1984. | MR | Zbl
[15] M. Mignotte, N. Tzanakis, On a family of cubics. J. Number Theory 39(1) (1991), 41–49. | MR | Zbl
[16] P. Ribenboim, Remarks on existentially closed fields and diophantine equations. Rend. Sem. Mat. Univ. Padova 71 (1984), 229–237. | Numdam | MR | Zbl
[17] M. Rosen, Number theory in function fields. Volume 210 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2002. | MR | Zbl
[18] W. M. Schmidt, Thue’s equation over function fields. J. Austral. Math. Soc. Ser. A 25(4) (1978), 385–422. | Zbl
[19] E. Thomas, Solutions to certain families of Thue equations. J. Number Theory 43(3) (1993), 319–369. | MR | Zbl
[20] A. Thue, Über Annäherungswerte algebraischer Zahlen. J. Reine und Angew. Math. 135 (1909), 284–305.
[21] E. Wirsing, Approximation mit algebraischen Zahlen beschränkten Grades. J. Reine Angew. Math. 206 (1960), 67–77. | MR | Zbl
[22] V. Ziegler, On a family of Cubics over Imaginary Quadratic Fields. Period. Math. Hungar. 51(2) (2005), 109–130. | MR | Zbl
Cité par Sources :