On améliore un majorant connu pour la dimension
We improve the known upper bound of the dimension
@article{JTNB_2007__19_2_405_0, author = {Gaulter, Mark}, title = {Characteristic vectors of unimodular lattices which represent two}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {405--414}, publisher = {Universit\'e Bordeaux 1}, volume = {19}, number = {2}, year = {2007}, doi = {10.5802/jtnb.594}, mrnumber = {2394894}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jtnb.594/} }
TY - JOUR AU - Gaulter, Mark TI - Characteristic vectors of unimodular lattices which represent two JO - Journal de théorie des nombres de Bordeaux PY - 2007 SP - 405 EP - 414 VL - 19 IS - 2 PB - Université Bordeaux 1 UR - https://www.numdam.org/articles/10.5802/jtnb.594/ DO - 10.5802/jtnb.594 LA - en ID - JTNB_2007__19_2_405_0 ER -
%0 Journal Article %A Gaulter, Mark %T Characteristic vectors of unimodular lattices which represent two %J Journal de théorie des nombres de Bordeaux %D 2007 %P 405-414 %V 19 %N 2 %I Université Bordeaux 1 %U https://www.numdam.org/articles/10.5802/jtnb.594/ %R 10.5802/jtnb.594 %G en %F JTNB_2007__19_2_405_0
Gaulter, Mark. Characteristic vectors of unimodular lattices which represent two. Journal de théorie des nombres de Bordeaux, Tome 19 (2007) no. 2, pp. 405-414. doi : 10.5802/jtnb.594. https://www.numdam.org/articles/10.5802/jtnb.594/
[1] J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups. Third Edition, Springer-Verlag New York, 1999. | MR | Zbl
[2] N. D. Elkies, A characterization of the
[3] N. D. Elkies, Lattices and codes with long shadows. Math Res. Lett. 2 (1995), 643–651. | MR | Zbl
[4] P. Gaborit, Bounds for certain s-extremal lattices and codes. Preprint. | Zbl
[5] M. Gaulter, Characteristic Vectors of Unimodular Lattices over the Integers. Ph.D. Thesis, University of California, Santa Barbara, 1998. | MR
[6] M. Gaulter, Lattices without short characteristic vectors. Math Res. Lett. 5 (1998), 353–362. | MR | Zbl
[7] L. J. Gerstein, Characteristic elements of unimodular lattices. Linear and Multilinear Algebra 52 (2004), 381–383. | MR | Zbl
[8] J. Martinet, Réseaux Euclidiens Designs Sphériques et Formes Modulaires. L’Enseignement Mathématique, Geneva, 2001. | Zbl
[9] G. Nebe and B. Venkov, Unimodular Lattices with Long Shadow. J. Number Theory 99 (2003), 307–317. | MR | Zbl
- On intersection forms of definite 4-manifolds bounded by a rational homology 3-sphere, Topology and its Applications, Volume 238 (2018), p. 59 | DOI:10.1016/j.topol.2018.01.013
- Some Results Related to the Conjecture by Belfiore and Solé, IEEE Transactions on Information Theory, Volume 60 (2014) no. 5, p. 2805 | DOI:10.1109/tit.2014.2311075
- CONSTRUCTION OF SOME UNIMODULAR LATTICES WITH LONG SHADOWS, International Journal of Number Theory, Volume 07 (2011) no. 05, p. 1345 | DOI:10.1142/s1793042111004794
Cité par 3 documents. Sources : Crossref