We prove density modulo of the sets of the form
where is a pair of rationally independent algebraic integers of degree satisfying some additional assumptions, and is any sequence of real numbers.
Nous établissons la densité modulo des ensembles de la forme
où sont deux entiers algébriques de degré qui sont rationnellement indépendants et satisfont des hypothèses techniques supplémentaires, et une suite quelconque de nombres réels.
@article{JTNB_2007__19_3_755_0, author = {Urban, Roman}, title = {Sequences of algebraic integers and density modulo~$1$}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {755--762}, publisher = {Universit\'e Bordeaux 1}, volume = {19}, number = {3}, year = {2007}, doi = {10.5802/jtnb.610}, zbl = {1157.11030}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jtnb.610/} }
TY - JOUR AU - Urban, Roman TI - Sequences of algebraic integers and density modulo $1$ JO - Journal de théorie des nombres de Bordeaux PY - 2007 SP - 755 EP - 762 VL - 19 IS - 3 PB - Université Bordeaux 1 UR - http://archive.numdam.org/articles/10.5802/jtnb.610/ DO - 10.5802/jtnb.610 LA - en ID - JTNB_2007__19_3_755_0 ER -
%0 Journal Article %A Urban, Roman %T Sequences of algebraic integers and density modulo $1$ %J Journal de théorie des nombres de Bordeaux %D 2007 %P 755-762 %V 19 %N 3 %I Université Bordeaux 1 %U http://archive.numdam.org/articles/10.5802/jtnb.610/ %R 10.5802/jtnb.610 %G en %F JTNB_2007__19_3_755_0
Urban, Roman. Sequences of algebraic integers and density modulo $1$. Journal de théorie des nombres de Bordeaux, Volume 19 (2007) no. 3, pp. 755-762. doi : 10.5802/jtnb.610. http://archive.numdam.org/articles/10.5802/jtnb.610/
[1] D. Berend, Multi-invariant sets on tori. Trans. Amer. Math. Soc. 280 (1983), no. 2, 509–532. | MR | Zbl
[2] D. Berend, Multi-invariant sets on compact abelian groups. Trans. Amer. Math. Soc. 286 (1984), no. 2, 505–535. | MR | Zbl
[3] D. Berend, Dense dilated semigroups of algebraic numbers. J. Number Theory 26 (1987), no. 3, 246–256. | MR | Zbl
[4] H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation. Math. Systems Theory 1 (1967), 1–49. | MR | Zbl
[5] Y. Guivarc’h and A. N. Starkov, Orbits of linear group actions, random walk on homogeneous spaces, and toral automorphisms. Ergodic Theory Dynam. Systems 24 (2004), no. 3, 767–802. | MR | Zbl
[6] Y. Guivarc’h and R. Urban, Semigroup actions on tori and stationary measures on projective spaces. Studia Math. 171 (2005), no. 1, 33–66. | MR | Zbl
[7] A. Katok and B. Hasselblatt, Introduction to the modern theory of dynamical systems. Encyclopedia of Mathematics and its Applications 54, Cambridge University Press, Cambridge, 1995. | MR | Zbl
[8] S. Kolyada and L. Snoha, Some aspects of topological transitivity – a survey. Grazer Math. Ber. 334 (1997), 3–35. | MR | Zbl
[9] B. Kra, A generalization of Furstenberg’s Diophantine theorem. Proc. Amer. Math. Soc. 127 (1999), no. 7, 1951–1956. | MR | Zbl
[10] D. Meiri, Entropy and uniform distribution of orbits in . Israel J. Math. 105 (1998), 155–183. | MR | Zbl
[11] L. Kuipers and H. Niederreiter, Uniform distribution of sequences. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. | MR | Zbl
[12] R. Mañé, Ergodic theory and differentiable dynamics. Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Springer-Verlag, Berlin, 1987. | MR | Zbl
[13] R. Muchnik, Semigroup actions on . Geometriae Dedicata 110 (2005), 1–47. | MR | Zbl
[14] S. Silverman, On maps with dense orbits and the definition of chaos. Rocky Mt. J. Math. 22 (1992), no. 1, 353–375. | MR | Zbl
[15] R. Urban, On density modulo of some expressions containing algebraic integers. Acta Arith., 127 (2007), no. 3, 217–229. | MR | Zbl
Cited by Sources: