We show that the slopes of the operator acting on 5-adic overconvergent modular forms of weight with primitive Dirichlet character of conductor 25 are given by either
depending on and .
We also prove that the space of classical cusp forms of weight and character has a basis of eigenforms for the Hecke operators and which is defined over .
Nous démontrons que les pentes de l’opérateur agissant sur 5-adique formes modulaires surconvergentes de poids avec caractère de Dirichlet primitif de conducteur 25 sont
Nous prouvons aussi que l’espace de forms parabolique de poids et caractère a une base des formes propres pour les opérateurs de Hecke et définie sur .
@article{JTNB_2008__20_1_165_0, author = {Kilford, L. J. P}, title = {On the slopes of the~${U_5}$ operator acting on overconvergent modular forms}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {165--182}, publisher = {Universit\'e Bordeaux 1}, volume = {20}, number = {1}, year = {2008}, doi = {10.5802/jtnb.620}, mrnumber = {2434162}, zbl = {1211.11059}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jtnb.620/} }
TY - JOUR AU - Kilford, L. J. P TI - On the slopes of the ${U_5}$ operator acting on overconvergent modular forms JO - Journal de théorie des nombres de Bordeaux PY - 2008 SP - 165 EP - 182 VL - 20 IS - 1 PB - Université Bordeaux 1 UR - http://archive.numdam.org/articles/10.5802/jtnb.620/ DO - 10.5802/jtnb.620 LA - en ID - JTNB_2008__20_1_165_0 ER -
%0 Journal Article %A Kilford, L. J. P %T On the slopes of the ${U_5}$ operator acting on overconvergent modular forms %J Journal de théorie des nombres de Bordeaux %D 2008 %P 165-182 %V 20 %N 1 %I Université Bordeaux 1 %U http://archive.numdam.org/articles/10.5802/jtnb.620/ %R 10.5802/jtnb.620 %G en %F JTNB_2008__20_1_165_0
Kilford, L. J. P. On the slopes of the ${U_5}$ operator acting on overconvergent modular forms. Journal de théorie des nombres de Bordeaux, Volume 20 (2008) no. 1, pp. 165-182. doi : 10.5802/jtnb.620. http://archive.numdam.org/articles/10.5802/jtnb.620/
[1] W. Bosma, J. Cannon,C. Playoust, The Magma algebra system I: The user language. J. Symb. Comp. 24(3–4) (1997), 235–265. http://magma.maths.usyd.edu.au. | MR | Zbl
[2] K. Buzzard, Questions about slopes of modular forms. Astérisque 298 (2005), 1–15. | Numdam | MR | Zbl
[3] K. Buzzard, F. Calegari, Slopes of overconvergent 2-adic modular forms. Compos. Math. 141(3) (2005), 591–604. | MR | Zbl
[4] K. Buzzard, L. J. P. Kilford, The 2-adic eigencurve at the boundary of weight space. Compos. Math. 141(3) (2005), 605–619. | MR | Zbl
[5] H. Cohen, J. Oesterlé, Dimensions des espaces de formes modulaires. Lecture Notes in Mathematics 627 (1977), 69–78. | MR | Zbl
[6] R. Coleman, Classical and overconvergent modular forms of higher level. J. Théor. Nombres Bordeaux 9(2) (1997), 395–403. | EuDML | Numdam | MR | Zbl
[7] R. Coleman, -adic Banach spaces and families of modular forms. Invent. Math 127 (1997), 417–479. | MR | Zbl
[8] R. Coleman, Classical and overconvergent modular forms. Invent. Math. 124(1–3) (1996), 215–241. | MR | Zbl
[9] M. Emerton, 2-adic Modular Forms of minimal slope. PhD thesis, Harvard University, 1998.
[10] N. Katz, -adic properties of modular forms and modular curves. Lecture Notes in Mathematics 350 (1973), 69–190. | MR | Zbl
[11] L. J. P. Kilford, Slopes of 2-adic overconvergent modular forms with small level. Math. Res. Lett. 11(5–6) (2004), 723–739. | MR | Zbl
[12] D. Loeffler, Spectral expansions of overconvergent modular functions. Int. Math. Res. Not. IMRN 2007, no. 16, Art. ID rnm050. | MR | Zbl
[13] T. Miyake, Modular Forms. Springer, 1989. | MR | Zbl
[14] K. Ribet, Galois representations attached to eigenforms with Nebentypus. Lecture Notes in Mathematics 601 (1977), 17–51. | MR | Zbl
[15] J.-P. Serre, Endomorphismes complètements continus des espaces de Banach -adique Publ. Math. IHES 12 (1962), 69–85. | Numdam | MR | Zbl
[16] L. Smithline, Exploring slopes of -adic modular forms. PhD thesis, University of California at Berkeley, 2000.
[17] L. Smithline, Compact operators with rational generation. In Number theory, volume 36 of CRM Proc. Lecture Notes, pages 287–294. Amer. Math. Soc., Providence, RI, 2004. | MR | Zbl
Cited by Sources: