Dans cet article nous étudions une action du groupe de Galois absolu sur des arbres planaires bicolores. A l’encontre de l’action similaire fournie par la théorie des “dessins d’enfants” de Grothendieck, l’action est induite par l’action de sur des classes d’équivalence de polynômes conservateurs qui sont les exemples les plus simples de fonctions rationnelles finies postcritiques. Nous établissons les propriétés principales de l’action et la comparons avec l’action de Grothendieck.
In this paper we study an action of the absolute Galois group on bicolored plane trees. In distinction with the similar action provided by the Grothendieck theory of “Dessins d’enfants” the action is induced by the action of on equivalence classes of conservative polynomials which are the simplest examples of postcritically finite rational functions. We establish some basic properties of the action and compare it with the Grothendieck action.
@article{JTNB_2008__20_1_205_0, author = {Pakovich, Fedor}, title = {Conservative polynomials and yet another action of $\operatorname{Gal}(\bar{\mathbb{Q}}/\mathbb{Q})$ on plane trees}, journal = {Journal de Th\'eorie des Nombres de Bordeaux}, pages = {205--218}, publisher = {Universit\'e Bordeaux 1}, volume = {20}, number = {1}, year = {2008}, doi = {10.5802/jtnb.622}, mrnumber = {2434164}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jtnb.622/} }
TY - JOUR AU - Pakovich, Fedor TI - Conservative polynomials and yet another action of $\operatorname{Gal}(\bar{\mathbb{Q}}/\mathbb{Q})$ on plane trees JO - Journal de Théorie des Nombres de Bordeaux PY - 2008 DA - 2008/// SP - 205 EP - 218 VL - 20 IS - 1 PB - Université Bordeaux 1 UR - http://archive.numdam.org/articles/10.5802/jtnb.622/ UR - https://www.ams.org/mathscinet-getitem?mr=2434164 UR - https://doi.org/10.5802/jtnb.622 DO - 10.5802/jtnb.622 LA - en ID - JTNB_2008__20_1_205_0 ER -
Pakovich, Fedor. Conservative polynomials and yet another action of $\operatorname{Gal}(\bar{\mathbb{Q}}/\mathbb{Q})$ on plane trees. Journal de Théorie des Nombres de Bordeaux, Tome 20 (2008) no. 1, pp. 205-218. doi : 10.5802/jtnb.622. http://archive.numdam.org/articles/10.5802/jtnb.622/
[1] G. Belyi, On Galois extensions of a maximal cyclotomic field. Math. USSR, Izv. 14 (1980), 247–256. | MR 534593 | Zbl 0429.12004
[2] A. Douady, J. Hubbard, A proof of Thurston’s topological characterization of rational functions. Acta Math. 171, No.2 (1993), 263-297. | Zbl 0806.30027
[3] A. Kostrikin, Conservative polynomials. In “Stud. Algebra Tbilisi”, 115–129, 1984. | Zbl 0728.12003
[4] S. Lando, A. Zvonkin, Graphs on Surfaces and Their Applications. Encyclopedia of Mathematical Sciences 141(II), Berlin: Springer, 2004. | MR 2036721 | Zbl 1040.05001
[5] K. Pilgrim, Dessins d’enfants and Hubbard trees, Ann. Sci. École Norm. Sup. (4) 33 (2000), no. 5, 671–693. | Numdam | Zbl 1066.14503
[6] A. Poirier, On postcritically finite polynomials, part 1: critical portraits. Preprint, arxiv:math. DS/9305207.
[7] A. Poirier, On postcritically finite polynomials, part 2: Hubbard trees. Preprint, arxiv:math. DS/9307235.
[8] L. Schneps, Dessins d’enfants on the Riemann sphere. In “The Grothendieck Theory of Dessins D’enfants” (L. Shneps eds.), Cambridge University Press, London mathematical society lecture notes series 200 (1994), 47–77. | Zbl 0823.14017
[9] J. Silverman, The field of definition for dynamical systems on . Compos. Math. 98, No.3 (1995), 269–304. | Numdam | MR 1351830 | Zbl 0849.11090
[10] S. Smale, The fundamental theorem of algebra and complexity theory. Bull. Amer. Math. Soc. 4 (1981), 1–36. | MR 590817 | Zbl 0456.12012
[11] D. Tischler, Critical points and values of complex polynomials. J. of Complexity 5 (1989), 438–456. | MR 1028906 | Zbl 0728.12004
Cité par Sources :