Nous développons un algorithme pour déterminer le 2-groupe des classes positives dans le cas où le corps de nombres considéré possède des places paires exceptionnelles. Cela donne en particulier le 2-rang du noyau sauvage .
We present an algorithm for computing the 2-group of the positive divisor classes in case the number field has exceptional dyadic places. As an application, we compute the 2-rank of the wild kernel in .
@article{JTNB_2008__20_3_715_0, author = {Jaulent, Jean-Fran\c{c}ois and Pauli, Sebastian and Pohst, Michael E. and Soriano{\textendash}Gafiuk, Florence}, title = {Computation of 2-groups of positive classes of exceptional number fields}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {715--732}, publisher = {Universit\'e Bordeaux 1}, volume = {20}, number = {3}, year = {2008}, doi = {10.5802/jtnb.647}, mrnumber = {2523314}, zbl = {1201.11106}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jtnb.647/} }
TY - JOUR AU - Jaulent, Jean-François AU - Pauli, Sebastian AU - Pohst, Michael E. AU - Soriano–Gafiuk, Florence TI - Computation of 2-groups of positive classes of exceptional number fields JO - Journal de théorie des nombres de Bordeaux PY - 2008 SP - 715 EP - 732 VL - 20 IS - 3 PB - Université Bordeaux 1 UR - http://archive.numdam.org/articles/10.5802/jtnb.647/ DO - 10.5802/jtnb.647 LA - en ID - JTNB_2008__20_3_715_0 ER -
%0 Journal Article %A Jaulent, Jean-François %A Pauli, Sebastian %A Pohst, Michael E. %A Soriano–Gafiuk, Florence %T Computation of 2-groups of positive classes of exceptional number fields %J Journal de théorie des nombres de Bordeaux %D 2008 %P 715-732 %V 20 %N 3 %I Université Bordeaux 1 %U http://archive.numdam.org/articles/10.5802/jtnb.647/ %R 10.5802/jtnb.647 %G en %F JTNB_2008__20_3_715_0
Jaulent, Jean-François; Pauli, Sebastian; Pohst, Michael E.; Soriano–Gafiuk, Florence. Computation of 2-groups of positive classes of exceptional number fields. Journal de théorie des nombres de Bordeaux, Tome 20 (2008) no. 3, pp. 715-732. doi : 10.5802/jtnb.647. http://archive.numdam.org/articles/10.5802/jtnb.647/
[1] K. Belabas and H. Gangl, Generators and Relations for . K-Theory 31 (2004), 135–231. | MR | Zbl
[2] J.J. Cannon et al., The computer algebra system Magma, The University of Sydney (2006), http://magma.maths.usyd.edu.au/magma/.
[3] F. Diaz y Diaz, J.-F. Jaulent, S. Pauli, M.E. Pohst and F. Soriano, A new algorithm for the computation of logarithmic class groups of number fields. Experimental Math. 14 (2005), 67–76. | Zbl
[4] F. Diaz y Diaz and F. Soriano, Approche algorithmique du groupe des classes logarithmiques. J. Number Theory 76 (1999), 1–15. | MR | Zbl
[5] S. Freundt, A. Karve, A. Krahmann, S. Pauli, KASH: Recent Developments, in Mathematical Software - ICMS 2006, Second International Congress on Mathematical Software, LNCS 4151, Springer, Berlin, 2006, http://www.math.tu-berlin.de/~kant. | MR
[6] K. Hutchinson, The -Sylow Subgroup of the Wild Kernel of Exceptional Number Fields. J. Number Th. 87 (2001), 222–238. | MR | Zbl
[7] K. Hutchinson, On Tame and wild kernels of special number fields. J. Number Th. 107 (2004), 368–391. | MR | Zbl
[8] K. Hutchinson and D. Ryan, Hilbert symbols as maps of functors. Acta Arith. 114 (2004), 349–368. | MR | Zbl
[9] J.-F. Jaulent, Sur le noyau sauvage des corps de nombres. Acta Arithmetica 67 (1994), 335–348. | MR | Zbl
[10] J.-F. Jaulent, Classes logarithmiques des corps de nombres. J. Théor. Nombres Bordeaux 6 (1994), 301–325. | Numdam | MR | Zbl
[11] J.-F. Jaulent, S. Pauli, M. Pohst and F. Soriano-Gafiuk, Computation of 2-groups of narrow logarithmic divisor classes of number fields, Preprint.
[12] J.-F. Jaulent and F. Soriano-Gafiuk, Sur le noyau sauvage des corps de nombres et le groupe des classes logarithmiques. Math. Z. 238 (2001), 335–354. | MR | Zbl
[13] J.-F. Jaulent and F. Soriano-Gafiuk, 2-groupe des classes positives d’un corps de nombres et noyau sauvage de la K-théorie. J. Number Th. 108 (2004), 187–208; | MR | Zbl
[14] J.-F. Jaulent and F. Soriano-Gafiuk, Sur le sous-groupe des éléments de hauteur infinie du d’un corps de nombres. Acta Arith. 122 (2006), 235–244. | MR | Zbl
[15] S. Pauli and F. Soriano-Gafiuk, The discrete logarithm in logarithmic -class groups and its applications in K-Theory. In “Algorithmic Number Theory”, D. Buell (ed.), Proceedings of ANTS VI, Springer LNCS 3076 (2004), 367–378. | MR | Zbl
[16] F. Soriano, Classes logarithmiques au sens restreint. Manuscripta Math. 93 (1997), 409–420. | MR | Zbl
[17] F. Soriano-Gafiuk, Sur le noyau hilbertien d’un corps de nombres. C. R. Acad. Sci. Paris t. 330 , Série I (2000), 863–866. | MR | Zbl
Cité par Sources :