Let be a finite-volume quotient of the upper-half space, where is a discrete subgroup. To a finite dimensional unitary representation of one associates the Selberg zeta function . In this paper we prove the Artin formalism for the Selberg zeta function. Namely, if is a finite index group extension of in , and is the induced representation, then . In the second part of the paper we prove by a direct method the analogous identity for the scattering function, namely , for an appropriate normalization of the Eisenstein series.
Soit un sous-groupe discret de tel que le quotient ait un volume fini. On associe à une représentation unitaire de dimension finie de la fonction zêta de Selberg . Dans cet article, on prouve le formalisme d’Artin pour cette fonction zêta de Selberg. Plus précisément, si est une extension de d’indice fini dans , et si est la représentation induite, alors . Dans la deuxième partie de l’article, on prouve par une méthode directe l’identité analogue pour la fonction de dispersion. Plus précisément, pour une certaine normalisation de la série d’Eisenstein.
@article{JTNB_2009__21_1_59_0, author = {Brenner, Eliot and Spinu, Florin}, title = {Artin formalism for {Selberg} zeta functions of co-finite {Kleinian} groups}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {59--75}, publisher = {Universit\'e Bordeaux 1}, volume = {21}, number = {1}, year = {2009}, doi = {10.5802/jtnb.657}, mrnumber = {2537703}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jtnb.657/} }
TY - JOUR AU - Brenner, Eliot AU - Spinu, Florin TI - Artin formalism for Selberg zeta functions of co-finite Kleinian groups JO - Journal de théorie des nombres de Bordeaux PY - 2009 SP - 59 EP - 75 VL - 21 IS - 1 PB - Université Bordeaux 1 UR - http://archive.numdam.org/articles/10.5802/jtnb.657/ DO - 10.5802/jtnb.657 LA - en ID - JTNB_2009__21_1_59_0 ER -
%0 Journal Article %A Brenner, Eliot %A Spinu, Florin %T Artin formalism for Selberg zeta functions of co-finite Kleinian groups %J Journal de théorie des nombres de Bordeaux %D 2009 %P 59-75 %V 21 %N 1 %I Université Bordeaux 1 %U http://archive.numdam.org/articles/10.5802/jtnb.657/ %R 10.5802/jtnb.657 %G en %F JTNB_2009__21_1_59_0
Brenner, Eliot; Spinu, Florin. Artin formalism for Selberg zeta functions of co-finite Kleinian groups. Journal de théorie des nombres de Bordeaux, Volume 21 (2009) no. 1, pp. 59-75. doi : 10.5802/jtnb.657. http://archive.numdam.org/articles/10.5802/jtnb.657/
[1] E. Brenner, F. Spinu, Artin Formalism, for Kleinian Groups, via Heat Kernel Methods. Submitted to Serge Lang Memorial Volume.
[2] P. Cohen, P. Sarnak, Lecture notes on Selberg trace formula (unpublished).
[3] J. Elstrodt, F. Grunewald, J. Mennicke, Groups acting on hyperbolic space. Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. | MR | Zbl
[4] J. Friedman, The Selberg trace formula and Selberg-zeta function for cofinite Kleinian groups with finite-dimensional unitary representations. Math. Zeit. 50 (2005), No.4. | MR | Zbl
[5] J. Friedman, Analogues of the Artin factorization formula for the automorphic scattering matrix and Selberg zeta-function associated to a Kleinian group. Arxiv:math/0702030. | MR
[6] R. Gangolli, G. Warner, Zeta functions of Selberg’s type for some noncompact quotients of symmetric spaces of rank one. Nagoya Math. J. 78 (1980), 1–44. | MR
[7] J. Jorgenson, S. Lang, Artin formalism and heat kernels. Jour. Reine. Angew. Math. 447 (1994), 165–280. | MR | Zbl
[8] A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric spaces with applications to Dirichlet series. J. Indian Math. Soc. 20 (1956), 47–87. | MR | Zbl
[9] A.B. Venkov, The Artin Takagi formula for Selberg’s zeta-function and the Roelcke conjecture. Soviet Math. Dokl. 20 (1979), No.4, 745–748. | Zbl
[10] A. B. Venkov, Spectral Theory of Automorphic Functions. Proceedings of the Steklov Institute of Mathematics 4, 1982. | MR | Zbl
[11] A. B. Venkov, P. Zograf, Analogues of Artin’s factorization in the spectral theory of automorphic functions. Math. USSR Izvestiya 2 (1983), No. 3, 435–443. | Zbl
Cited by Sources: