Soient
Let
@article{JTNB_2009__21_3_609_0, author = {Ingram, Patrick}, title = {A quantitative primitive divisor result for points on elliptic curves}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {609--634}, publisher = {Universit\'e Bordeaux 1}, volume = {21}, number = {3}, year = {2009}, doi = {10.5802/jtnb.691}, zbl = {1208.11073}, mrnumber = {2605536}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jtnb.691/} }
TY - JOUR AU - Ingram, Patrick TI - A quantitative primitive divisor result for points on elliptic curves JO - Journal de théorie des nombres de Bordeaux PY - 2009 SP - 609 EP - 634 VL - 21 IS - 3 PB - Université Bordeaux 1 UR - https://www.numdam.org/articles/10.5802/jtnb.691/ DO - 10.5802/jtnb.691 LA - en ID - JTNB_2009__21_3_609_0 ER -
%0 Journal Article %A Ingram, Patrick %T A quantitative primitive divisor result for points on elliptic curves %J Journal de théorie des nombres de Bordeaux %D 2009 %P 609-634 %V 21 %N 3 %I Université Bordeaux 1 %U https://www.numdam.org/articles/10.5802/jtnb.691/ %R 10.5802/jtnb.691 %G en %F JTNB_2009__21_3_609_0
Ingram, Patrick. A quantitative primitive divisor result for points on elliptic curves. Journal de théorie des nombres de Bordeaux, Tome 21 (2009) no. 3, pp. 609-634. doi : 10.5802/jtnb.691. https://www.numdam.org/articles/10.5802/jtnb.691/
[1] A. S. Bang, Taltheoretiske Undersølgelser. Tidskrift f. Math. 5 (1886).
[2] Y. Bilu, G. Hanrot, and P. M. Voutier, Existence of primitive divisors of Lucas and Lehmer numbers. J. Reine Angew. Math. 539 (2001), (with an appendix by M. Mignotte). | MR | Zbl
[3] A. Bremner, J. H. Silverman and N. Tzanakis, Integral points in arithmetic progression on
[4] Y. Bugeaud, P. Corvaja, and U. Zannier,An upper bound for the G.C.D. of
[5] R. D. Carmichael,On the numerical factors of the arithmetic forms
[6] G. Cornelissen and K. Zahidi, Elliptic divisibility sequences and undecidable problems about rational points. J. Reine Angew. Math. 613 (2007). | MR | Zbl
[7] S. David, Minorations de formes linéaires de logarithmes elliptiques. Mém. Soc. Math. France No. 62 (1995). | EuDML | Numdam | MR | Zbl
[8] G. Everest, G. McLaren, and T. Ward, Primitive divisors of elliptic divisibility sequences. J. Number Theory 118 (2006). | MR | Zbl
[9] P. Ingram, Elliptic divisibility sequences over certain curves. J. Number Theory 123 (2007). | MR | Zbl
[10] P. Ingram, Multiples of integral points on elliptic curves. J. Number Theory, to appear (arXiv:0802.2651v1) | MR
[11] P. Ingram and J. H. Silverman, Uniform bounds for primitive divisors in elliptic divisibility sequences. (preprint)
[12] K. Ireland and M. Rosen. A Classical Introduction to Modern Number Theory. Volume 84 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1998. | MR | Zbl
[13] PARI/GP, version 2.3.0, Bordeaux, 2005, http://pari.math.u-bordeaux.fr/.
[14] B. Poonen, Characterizing integers among rational numbers with a universal-existential formula. (arXiv:math/0703907) | MR
[15] K. F. Roth, Rational approximations to algebraic numbers. Mathematika 2 (1955). | MR | Zbl
[16] A. Schinzel, Primitive divisors of the expression
[17] R. Shipsey, Elliptic divisibility sequences. Ph.D. thesis, Goldsmiths, University of London, 2001.
[18] J. H. Silverman, The arithmetic of elliptic curves. Volume 106 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1986. | MR | Zbl
[19] J. H. Silverman, Wieferich’s criterion and the
[20] J. H. Silverman, Advanced topics in the arithmetic of elliptic curves. Volume 151 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1994. | MR | Zbl
[21] J. H. Silverman, Generalized greatest common divisors, divisibility sequences, and Vojta’s conjecture for blowups. Monatshefte für Mathematik 145 (2005). | MR
[22] C. L. Stewart, Primitive divisors of Lucas and Lehmer numbers. In Transcendence theory: advances and applications (Proc. Conf., Univ. Cambridge, Cambridge, 1976), Academic Press, London, 1977. | MR | Zbl
[23] R. J. Stroeker and N. Tzanakis, Solving elliptic Diophantine equations by estimating linear forms in elliptic logarithms. Acta Arithmetica 67 (1994). | MR | Zbl
[24] P. Vojta, Diophantine approximations and value distribution theory. Volume 1239 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1987 | MR | Zbl
[25] M. Ward, Memoir on elliptic divisibility sequences. Amer. J. Math. 70 (1948). | MR | Zbl
[26] K. Zsigmondy, Zur Theorie der Potenzreste. Monatsh. Math. 3 (1892).
Cité par Sources :