Gaps between zeros of the derivative of the Riemann ξ-function
Journal de théorie des nombres de Bordeaux, Volume 22 (2010) no. 2, pp. 287-305.

Assuming the Riemann hypothesis, we investigate the distribution of gaps between the zeros of ξ (s). We prove that a positive proportion of gaps are less than 0.796 times the average spacing and, in the other direction, a positive proportion of gaps are greater than 1.18 times the average spacing. We also exhibit the existence of infinitely many normalized gaps smaller (larger) than 0.7203 (1.5, respectively).

En supposant l’hypothèse de Riemann, on examine la distribution d’écarts entre les zéros du ξ (s). On démontre qu’une proportion positive d’écarts sont inférieurs à 0.796 fois l’écart moyen et que dans l’autre direction, une proportion positive d’écarts sont 1.18 fois supérieurs à l’écart moyen. On montre également l’existence d’un nombre infini d’écarts normalisés qui sont inférieurs (supérieurs) à 0.7203 (respectivement 1.5).

DOI: 10.5802/jtnb.716
Classification: 11M26, 11M06
Bui, Hung Manh 1

1 Mathematical Institute University of Oxford Oxford, OX1 3LB England
@article{JTNB_2010__22_2_287_0,
     author = {Bui, Hung Manh},
     title = {Gaps between zeros of the derivative of the {Riemann} $\xi $-function},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {287--305},
     publisher = {Universit\'e Bordeaux 1},
     volume = {22},
     number = {2},
     year = {2010},
     doi = {10.5802/jtnb.716},
     zbl = {1223.11103},
     mrnumber = {2769063},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/jtnb.716/}
}
TY  - JOUR
AU  - Bui, Hung Manh
TI  - Gaps between zeros of the derivative of the Riemann $\xi $-function
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2010
SP  - 287
EP  - 305
VL  - 22
IS  - 2
PB  - Université Bordeaux 1
UR  - http://archive.numdam.org/articles/10.5802/jtnb.716/
DO  - 10.5802/jtnb.716
LA  - en
ID  - JTNB_2010__22_2_287_0
ER  - 
%0 Journal Article
%A Bui, Hung Manh
%T Gaps between zeros of the derivative of the Riemann $\xi $-function
%J Journal de théorie des nombres de Bordeaux
%D 2010
%P 287-305
%V 22
%N 2
%I Université Bordeaux 1
%U http://archive.numdam.org/articles/10.5802/jtnb.716/
%R 10.5802/jtnb.716
%G en
%F JTNB_2010__22_2_287_0
Bui, Hung Manh. Gaps between zeros of the derivative of the Riemann $\xi $-function. Journal de théorie des nombres de Bordeaux, Volume 22 (2010) no. 2, pp. 287-305. doi : 10.5802/jtnb.716. http://archive.numdam.org/articles/10.5802/jtnb.716/

[1] J. Bian, The pair correlation of zeros of ξ (k) (s) and discrete moments of ζ(s). PhD thesis, University of Rochester, 2008.

[2] H. M. Bui, Large gaps between consecutive zeros of the Riemann zeta-function. Preprint, available on Arxiv at http://arxiv.org/abs/0903.4007

[3] H. M. Bui, M. B. Milinovich, Nathan Ng, A note on the gaps between consecutive zeros of the Riemann zeta-function. To appear in Proc. Amer. Math. Soc. Available on Arxiv at http://arxiv.org/abs/0910.2052 | MR

[4] J. B. Conrey, A. Ghosh, D. Goldston, S. M. Gonek, D. R. Heath-Brown, On the distribution of gaps between zeros of the zeta-function. Quart. J. Math. Oxford 36 (1985), 43–51. | MR | Zbl

[5] J. B. Conrey, A. Ghosh, S. M. Gonek, A note on gaps between zeros of the zeta function. Bull. London Math. Soc. 16 (1984), 421–424. | MR | Zbl

[6] J. B. Conrey, A. Ghosh, S. M. Gonek, Large gaps between zeros of the zeta-function. Mathematika 33 (1986), 212–238. | MR | Zbl

[7] T. Craven, G. Csordas, W. Smith, The zeros of derivatives of entire functions and the Pólya-Wiman conjecture. Ann. Math. 125 (1987), 405–431. | MR | Zbl

[8] H. Davenport, Multiplicative number theory. GTM 74, Springer-Verlag, 2000. | MR | Zbl

[9] D. W. Farmer, S. M. Gonek, Pair correlation of the zeros of the derivative of the Riemann ξ-function. Preprint, available on Arxiv at http://arxiv.org/abs/0803.0425

[10] D. W. Farmer, R. Rhoades, Differentiation evens out zero spacings. Trans. Amer. Math. Soc. 357 (2005), 3789–3811. | MR | Zbl

[11] A. Fujii, On the distribution of the zeros of the Riemann zeta-function in short intervals. Bull. Amer. Math. Soc. 81 (1975), 139–142. | MR | Zbl

[12] R. R. Hall, A new unconditional result about large spaces between zeta zeros. Mathematika 52 (2005), 101–113. | MR | Zbl

[13] H. L. Montgomery, The pair correlation of zeros of the zeta function. Analytic Number Theory, Proc. Sym. Pure Math. 24 (1973), 181–193. | MR | Zbl

[14] H. L. Montgomery, A. M. Odlyzko, Gaps between zeros of the zeta function. Topics in Classical Number Theory, Coll. Math. Soc. Janos Bolyai 34 (1984), 1079–1106, North-Holland. | MR | Zbl

[15] H. L. Montgomery, R. C. Vaughan, The large sieve. Mathematika 20 (1973), 119–134. | MR | Zbl

[16] J. Mueller, On the difference between consecutive zeros of the Riemann zeta function. J. Number Theory 14 (1982), 327–331. | MR | Zbl

[17] Nathan Ng, Large gaps between the zeros of the Riemann zeta function. J. Number Theory 128 (2008), 509–556. | MR | Zbl

[18] A. Selberg, Note on a paper by L. G. Sathe. J. Indian Math. Soc. 18 (1954), 83–87. | MR | Zbl

[19] K. Soundararajan, On the distribution of gaps between zeros of the Riemann zeta-function. Quart. J. Math. Oxford 47 (1996), 383–387. | MR | Zbl

[20] E. C. Titchmarsh, The theory of the Riemann zeta-function. Revised by D. R. Heath-Brown, Clarendon Press, second edition, 1986. | MR | Zbl

Cited by Sources: