Nous démontrons un résultat sur l’existence des formes linéaires de type Diophantien donné.
We prove a result on the existence of linear forms of a given Diophantine type.
@article{JTNB_2010__22_2_383_0, author = {German, Oleg N. and Moshchevitin, Nikolay G.}, title = {Linear forms of a given {Diophantine} type}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {383--396}, publisher = {Universit\'e Bordeaux 1}, volume = {22}, number = {2}, year = {2010}, doi = {10.5802/jtnb.722}, zbl = {1239.11077}, mrnumber = {2769069}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jtnb.722/} }
TY - JOUR AU - German, Oleg N. AU - Moshchevitin, Nikolay G. TI - Linear forms of a given Diophantine type JO - Journal de théorie des nombres de Bordeaux PY - 2010 SP - 383 EP - 396 VL - 22 IS - 2 PB - Université Bordeaux 1 UR - https://www.numdam.org/articles/10.5802/jtnb.722/ DO - 10.5802/jtnb.722 LA - en ID - JTNB_2010__22_2_383_0 ER -
%0 Journal Article %A German, Oleg N. %A Moshchevitin, Nikolay G. %T Linear forms of a given Diophantine type %J Journal de théorie des nombres de Bordeaux %D 2010 %P 383-396 %V 22 %N 2 %I Université Bordeaux 1 %U https://www.numdam.org/articles/10.5802/jtnb.722/ %R 10.5802/jtnb.722 %G en %F JTNB_2010__22_2_383_0
German, Oleg N.; Moshchevitin, Nikolay G. Linear forms of a given Diophantine type. Journal de théorie des nombres de Bordeaux, Tome 22 (2010) no. 2, pp. 383-396. doi : 10.5802/jtnb.722. https://www.numdam.org/articles/10.5802/jtnb.722/
[1] R. K. Akhunzhanov, N. G. Moshchevitin, Vectors of given Diophantine type. Mathematical Notes 80:3 (2006), 318–328. | MR | Zbl
[2] V. Beresnevich, H. Dickinson, S. L. Velani, Sets of “exact logarithmic” order in the theory of Diophantine approximation. Math. Annalen 321 (2001), 253–273. | MR | Zbl
[3] Y. Bugeaud, Sets of exact approximation order by rational numbers. Math. Ann. 327 (2003), 171–190. | MR | Zbl
[4] Y. Bugeaud, Sets of exact approximation order by rational numbers II. Univ. Disrtib. Theory 3 (2008), 9–20. | MR
[5] T. W. Cusick, M. E. Flahive, The Markoff and Lagrange spectra. AMS, Providence, Math. surveys and monographs 30, 1989. | MR | Zbl
[6] O. N. German, Asymptotic directions for best approximations of an
[7] M. Hall Jr., On the sum and product of continued fractions. Ann. of Math. (2) 48 (1948), 966–993. | MR | Zbl
[8] V. Jarnik, Uber die simultanen diophantischen Approximationen. Math. Zeitschr. 33 (1931), 505–543. | MR
[9] V. Jarnik, Un Théorème d’existence pour Les Approximations Diophantiennes. L’Enseignement mathématique 25 (1969), 171–175. | MR | Zbl
[10] N. G. Moshchevitin, On simultaneous Diophantine approximations. Vectors of given Diophantine type. Mathematical Notes 61:5 (1997), 590–599. | MR | Zbl
- Sets of exact approximation order by complex rational numbers, Mathematische Zeitschrift, Volume 301 (2022) no. 1, pp. 199-223 | DOI:10.1007/s00209-021-02906-4 | Zbl:1491.11067
- Linear forms of a given Diophantine type and lattice exponents, Izvestiya: Mathematics, Volume 84 (2020) no. 1, pp. 3-22 | DOI:10.1070/im8810 | Zbl:1454.11132
- Линейные формы заданного диофантового типа и экспоненты решеток, Известия Российской академии наук. Серия математическая, Volume 84 (2020) no. 1, p. 5 | DOI:10.4213/im8810
Cité par 3 documents. Sources : Crossref, zbMATH