Linear forms of a given Diophantine type
Journal de théorie des nombres de Bordeaux, Volume 22 (2010) no. 2, pp. 383-396.

We prove a result on the existence of linear forms of a given Diophantine type.

Nous démontrons un résultat sur l’existence des formes linéaires de type Diophantien donné.

DOI: 10.5802/jtnb.722
German, Oleg N. 1; Moshchevitin, Nikolay G. 1

1 Moscow State University Vorobiovy Gory, GSP–2 119992 Moscow, RUSSIA
@article{JTNB_2010__22_2_383_0,
     author = {German, Oleg N. and Moshchevitin, Nikolay G.},
     title = {Linear forms of a given {Diophantine} type},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {383--396},
     publisher = {Universit\'e Bordeaux 1},
     volume = {22},
     number = {2},
     year = {2010},
     doi = {10.5802/jtnb.722},
     zbl = {1239.11077},
     mrnumber = {2769069},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/jtnb.722/}
}
TY  - JOUR
AU  - German, Oleg N.
AU  - Moshchevitin, Nikolay G.
TI  - Linear forms of a given Diophantine type
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2010
SP  - 383
EP  - 396
VL  - 22
IS  - 2
PB  - Université Bordeaux 1
UR  - http://archive.numdam.org/articles/10.5802/jtnb.722/
DO  - 10.5802/jtnb.722
LA  - en
ID  - JTNB_2010__22_2_383_0
ER  - 
%0 Journal Article
%A German, Oleg N.
%A Moshchevitin, Nikolay G.
%T Linear forms of a given Diophantine type
%J Journal de théorie des nombres de Bordeaux
%D 2010
%P 383-396
%V 22
%N 2
%I Université Bordeaux 1
%U http://archive.numdam.org/articles/10.5802/jtnb.722/
%R 10.5802/jtnb.722
%G en
%F JTNB_2010__22_2_383_0
German, Oleg N.; Moshchevitin, Nikolay G. Linear forms of a given Diophantine type. Journal de théorie des nombres de Bordeaux, Volume 22 (2010) no. 2, pp. 383-396. doi : 10.5802/jtnb.722. http://archive.numdam.org/articles/10.5802/jtnb.722/

[1] R. K. Akhunzhanov, N. G. Moshchevitin, Vectors of given Diophantine type. Mathematical Notes 80:3 (2006), 318–328. | MR | Zbl

[2] V. Beresnevich, H. Dickinson, S. L. Velani, Sets of “exact logarithmic” order in the theory of Diophantine approximation. Math. Annalen 321 (2001), 253–273. | MR | Zbl

[3] Y. Bugeaud, Sets of exact approximation order by rational numbers. Math. Ann. 327 (2003), 171–190. | MR | Zbl

[4] Y. Bugeaud, Sets of exact approximation order by rational numbers II. Univ. Disrtib. Theory 3 (2008), 9–20. | MR

[5] T. W. Cusick, M. E. Flahive, The Markoff and Lagrange spectra. AMS, Providence, Math. surveys and monographs 30, 1989. | MR | Zbl

[6] O. N. German, Asymptotic directions for best approximations of an n-dimensional linear form. (Russian) Mat. Zametki, 75:1 (2004), 55–70; translation in Math. Notes 75:1-2 (2004), 51–65. | MR | Zbl

[7] M. Hall Jr., On the sum and product of continued fractions. Ann. of Math. (2) 48 (1948), 966–993. | MR | Zbl

[8] V. Jarnik, Uber die simultanen diophantischen Approximationen. Math. Zeitschr. 33 (1931), 505–543. | MR

[9] V. Jarnik, Un Théorème d’existence pour Les Approximations Diophantiennes. L’Enseignement mathématique 25 (1969), 171–175. | MR | Zbl

[10] N. G. Moshchevitin, On simultaneous Diophantine approximations. Vectors of given Diophantine type. Mathematical Notes 61:5 (1997), 590–599. | MR | Zbl

Cited by Sources: