We give non-trivial upper bounds for the number of integral solutions, of given size, of a system of two quadratic form equations in five variables.
Nous donnons une majoration non triviale du nombre de solutions entières, de taille donnée, d’un système de deux formes quadratiques en cinq variables.
@article{JTNB_2010__22_2_403_0, author = {Iwaniec, Henryk and Munshi, Ritabrata}, title = {The circle method and pairs of quadratic forms}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {403--419}, publisher = {Universit\'e Bordeaux 1}, volume = {22}, number = {2}, year = {2010}, doi = {10.5802/jtnb.724}, zbl = {1223.11037}, mrnumber = {2769071}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jtnb.724/} }
TY - JOUR AU - Iwaniec, Henryk AU - Munshi, Ritabrata TI - The circle method and pairs of quadratic forms JO - Journal de théorie des nombres de Bordeaux PY - 2010 SP - 403 EP - 419 VL - 22 IS - 2 PB - Université Bordeaux 1 UR - http://archive.numdam.org/articles/10.5802/jtnb.724/ DO - 10.5802/jtnb.724 LA - en ID - JTNB_2010__22_2_403_0 ER -
%0 Journal Article %A Iwaniec, Henryk %A Munshi, Ritabrata %T The circle method and pairs of quadratic forms %J Journal de théorie des nombres de Bordeaux %D 2010 %P 403-419 %V 22 %N 2 %I Université Bordeaux 1 %U http://archive.numdam.org/articles/10.5802/jtnb.724/ %R 10.5802/jtnb.724 %G en %F JTNB_2010__22_2_403_0
Iwaniec, Henryk; Munshi, Ritabrata. The circle method and pairs of quadratic forms. Journal de théorie des nombres de Bordeaux, Volume 22 (2010) no. 2, pp. 403-419. doi : 10.5802/jtnb.724. http://archive.numdam.org/articles/10.5802/jtnb.724/
[1] R. de la Bretèche; T.D. Browning, On Manin’s conjecture for singular del Pezzo surfaces of degree 4. I. Michigan Math. J. 55 (2007), no. 1, 51–80. | Zbl
[2] T.D. Browning, An overview of Manin’s conjecture for del Pezzo surfaces. Analytic Number Theory - A Tribute to Gauss and Dirichlet (Goettingen, 20th June - 24th June, 2005), Clay Mathematics Proceedings 7 (2007), 39–56. | Zbl
[3] W. Duke; J.B. Friedlander; H. Iwaniec, Bounds for automorphic -functions. Invent. Math. 112 (1993), no. 1, 1–8. | Zbl
[4] D.R. Heath-Brown, A new form of the circle method, and its application to quadratic forms. J. Reine Angew. Math. 481 (1996), 149–206. | Zbl
Cited by Sources: