On considère une équation de la forme suivante
sur le corps fini
We consider an equation of the type
over the finite field
@article{JTNB_2011__23_1_1_0, author = {Baoulina, Ioulia N.}, title = {On the {Carlitz} problem on the number of solutions to some special equations over finite fields}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {1--20}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {23}, number = {1}, year = {2011}, doi = {10.5802/jtnb.747}, zbl = {1267.11035}, mrnumber = {2780616}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jtnb.747/} }
TY - JOUR AU - Baoulina, Ioulia N. TI - On the Carlitz problem on the number of solutions to some special equations over finite fields JO - Journal de théorie des nombres de Bordeaux PY - 2011 SP - 1 EP - 20 VL - 23 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://www.numdam.org/articles/10.5802/jtnb.747/ DO - 10.5802/jtnb.747 LA - en ID - JTNB_2011__23_1_1_0 ER -
%0 Journal Article %A Baoulina, Ioulia N. %T On the Carlitz problem on the number of solutions to some special equations over finite fields %J Journal de théorie des nombres de Bordeaux %D 2011 %P 1-20 %V 23 %N 1 %I Société Arithmétique de Bordeaux %U https://www.numdam.org/articles/10.5802/jtnb.747/ %R 10.5802/jtnb.747 %G en %F JTNB_2011__23_1_1_0
Baoulina, Ioulia N. On the Carlitz problem on the number of solutions to some special equations over finite fields. Journal de théorie des nombres de Bordeaux, Tome 23 (2011) no. 1, pp. 1-20. doi : 10.5802/jtnb.747. https://www.numdam.org/articles/10.5802/jtnb.747/
[1] I. Baoulina, On the problem of explicit evaluation of the number of solutions of the equation
[2] I. Baoulina, On some equations over finite fields. J. Théor. Nombres Bordeaux 17 (2005), 45–50. | Numdam | MR | Zbl
[3] I. Baoulina, Generalizations of the Markoff-Hurwitz equations over finite fields. J. Number Theory 118 (2006), 31–52. | MR | Zbl
[4] I. Baoulina, On the number of solutions to the equation
[5] A. Baragar, The Markoff Equation and Equations of Hurwitz. Ph. D. Thesis, Brown University, 1991. | MR
[6] B. C. Berndt, R. J. Evans and K. S. Williams, Gauss and Jacobi Sums. Wiley-Interscience, New York, 1998. | MR | Zbl
[7] L. Carlitz, Certain special equations in a finite field. Monatsh. Math. 58 (1954), 5–12. | MR | Zbl
[8] S. A. Katre and A. R. Rajwade, Resolution of the sign ambiguity in the determination of the cyclotomic numbers of order
[9] R. Lidl and H. Niederreiter, Finite Fields. Cambridge Univ. Press, Cambridge, 1997. | MR | Zbl
Cité par Sources :