We consider an equation of the type
over the finite field . Carlitz obtained formulas for the number of solutions to this equation when and when and . In our earlier papers, we found formulas for the number of solutions when or or ; and when and is a power of modulo . In this paper, we obtain formulas for the number of solutions when , , or . For general case, we derive lower bounds for the number of solutions.
On considère une équation de la forme suivante
sur le corps fini . Carlitz a obtenu des formules pour le nombre de solutions de cette équation dans le cas et le cas avec . Dans des travaux anciens, on a démontré des formules pour le nombre de solutions lorsque ou ou , et aussi lorsque et est une puissance de modulo . Dans ce papier, on démontre des formules pour le nombre de solutions lorsque , , ou . On obtient aussi une borne inférieure pour le nombre de solutions dans le cas général.
@article{JTNB_2011__23_1_1_0, author = {Baoulina, Ioulia N.}, title = {On the {Carlitz} problem on the number of solutions to some special equations over finite fields}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {1--20}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {23}, number = {1}, year = {2011}, doi = {10.5802/jtnb.747}, zbl = {1267.11035}, mrnumber = {2780616}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jtnb.747/} }
TY - JOUR AU - Baoulina, Ioulia N. TI - On the Carlitz problem on the number of solutions to some special equations over finite fields JO - Journal de théorie des nombres de Bordeaux PY - 2011 SP - 1 EP - 20 VL - 23 IS - 1 PB - Société Arithmétique de Bordeaux UR - http://archive.numdam.org/articles/10.5802/jtnb.747/ DO - 10.5802/jtnb.747 LA - en ID - JTNB_2011__23_1_1_0 ER -
%0 Journal Article %A Baoulina, Ioulia N. %T On the Carlitz problem on the number of solutions to some special equations over finite fields %J Journal de théorie des nombres de Bordeaux %D 2011 %P 1-20 %V 23 %N 1 %I Société Arithmétique de Bordeaux %U http://archive.numdam.org/articles/10.5802/jtnb.747/ %R 10.5802/jtnb.747 %G en %F JTNB_2011__23_1_1_0
Baoulina, Ioulia N. On the Carlitz problem on the number of solutions to some special equations over finite fields. Journal de théorie des nombres de Bordeaux, Volume 23 (2011) no. 1, pp. 1-20. doi : 10.5802/jtnb.747. http://archive.numdam.org/articles/10.5802/jtnb.747/
[1] I. Baoulina, On the problem of explicit evaluation of the number of solutions of the equation in a finite field. In Current Trends in Number Theory, Edited by S. D. Adhikari, S. A. Katre and B. Ramakrishnan, Hindustan Book Agency, New Delhi, 2002, 27–37. | MR | Zbl
[2] I. Baoulina, On some equations over finite fields. J. Théor. Nombres Bordeaux 17 (2005), 45–50. | Numdam | MR | Zbl
[3] I. Baoulina, Generalizations of the Markoff-Hurwitz equations over finite fields. J. Number Theory 118 (2006), 31–52. | MR | Zbl
[4] I. Baoulina, On the number of solutions to the equation in a finite field. Int. J. Number Theory 4 (2008), 797–817. | MR
[5] A. Baragar, The Markoff Equation and Equations of Hurwitz. Ph. D. Thesis, Brown University, 1991. | MR
[6] B. C. Berndt, R. J. Evans and K. S. Williams, Gauss and Jacobi Sums. Wiley-Interscience, New York, 1998. | MR | Zbl
[7] L. Carlitz, Certain special equations in a finite field. Monatsh. Math. 58 (1954), 5–12. | MR | Zbl
[8] S. A. Katre and A. R. Rajwade, Resolution of the sign ambiguity in the determination of the cyclotomic numbers of order and the corresponding Jacobsthal sum. Math. Scand. 60 (1987), 52–62. | MR | Zbl
[9] R. Lidl and H. Niederreiter, Finite Fields. Cambridge Univ. Press, Cambridge, 1997. | MR | Zbl
Cited by Sources: