Nous établissons un analogue de la “plus haute profondeur” des déterminants régularisés due à Milnor pour les zéros des fonctions
We establish “higher depth” analogues of regularized determinants due to Milnor for zeros of cuspidal automorphic
@article{JTNB_2011__23_3_751_0, author = {Wakayama, Masato and Yamasaki, Yoshinori}, title = {Higher regularizations of zeros of cuspidal automorphic $L$-functions of ${\rm GL}_d$}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {751--767}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {23}, number = {3}, year = {2011}, doi = {10.5802/jtnb.785}, zbl = {1270.11055}, mrnumber = {2861083}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jtnb.785/} }
TY - JOUR AU - Wakayama, Masato AU - Yamasaki, Yoshinori TI - Higher regularizations of zeros of cuspidal automorphic $L$-functions of ${\rm GL}_d$ JO - Journal de théorie des nombres de Bordeaux PY - 2011 SP - 751 EP - 767 VL - 23 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://www.numdam.org/articles/10.5802/jtnb.785/ DO - 10.5802/jtnb.785 LA - en ID - JTNB_2011__23_3_751_0 ER -
%0 Journal Article %A Wakayama, Masato %A Yamasaki, Yoshinori %T Higher regularizations of zeros of cuspidal automorphic $L$-functions of ${\rm GL}_d$ %J Journal de théorie des nombres de Bordeaux %D 2011 %P 751-767 %V 23 %N 3 %I Société Arithmétique de Bordeaux %U https://www.numdam.org/articles/10.5802/jtnb.785/ %R 10.5802/jtnb.785 %G en %F JTNB_2011__23_3_751_0
Wakayama, Masato; Yamasaki, Yoshinori. Higher regularizations of zeros of cuspidal automorphic $L$-functions of ${\rm GL}_d$. Journal de théorie des nombres de Bordeaux, Tome 23 (2011) no. 3, pp. 751-767. doi : 10.5802/jtnb.785. https://www.numdam.org/articles/10.5802/jtnb.785/
[1] K. Barner, On A. Weil’s explicit formula. J. Reine Angew. Math. 323 (1981), 139–152. | EuDML | MR | Zbl
[2] D. Bump, Automorphic forms and representations. Cambridge Studies in Advanced Mathematics 55. Cambridge University Press, Cambridge, 1997. | MR | Zbl
[3] C. Deninger, Local
[4] R. Godement and H. Jacquet, Zeta functions of simple algebras. Lecture Notes in Mathematics, Vol. 260. Springer-Verlag, Berlin-New York, 1972. | MR | Zbl
[5] T. Ibukiyama and H. Saito, On zeta functions associated to symmetric matrices. I. An explicit form of zeta functions. Amer. J. Math. 117 (1995), 1097–1155. | MR | Zbl
[6] H. Iwaniec and P. Sarnak, Perspectives on the analytic theory of
[7] N. Kurokawa, H. Ochiai and M. Wakayama, Milnor’s multiple gamma functions. J. Ramanujan Math. Soc. 21 (2006), 153–167. | MR | Zbl
[8] N. Kurokawa and M. Wakayama, Analyticity of polylogarithmic Euler products. Rend. Circ. Mat. di Palermo. 200 (2003), 382–388. | MR | Zbl
[9] N. Kurokawa, M. Wakayama and Y. Yamasaki, Milnor-Selberg zeta functions and zeta regularizations. Preprint, 2011. arXiv:1011.3093. | MR
[10] W. Luo, Z. Rudnick and P. Sarnak, On the generalized Ramanujan conjecture for
[11] J. Milnor, On polylogarithms, Hurwitz zeta functions, and the Kubert identities. Enseignement Mathématique. 29 (1983), 281–322. | MR | Zbl
[12] P. Michel, Répartition des zéros des fonctions
[13] M. Schröter and C. Soulé, On a result of Deninger concerning Riemann’s zeta function. In Motives, Proc. Sympos. Pure Math. 55, Part 1 (1994), 745–747. | MR | Zbl
[14] J. Steuding, Value-distribution of
[15] Y. Yamasaki, Factorization formulas for higher depth determinants of the Laplacian on the
Cité par Sources :