Soit
Let
@article{JTNB_2012__24_1_73_0, author = {B\"ockle, Gebhard and Butenuth, Ralf}, title = {On computing quaternion quotient graphs for function fields}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {73--99}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {24}, number = {1}, year = {2012}, doi = {10.5802/jtnb.789}, mrnumber = {2914902}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jtnb.789/} }
TY - JOUR AU - Böckle, Gebhard AU - Butenuth, Ralf TI - On computing quaternion quotient graphs for function fields JO - Journal de théorie des nombres de Bordeaux PY - 2012 SP - 73 EP - 99 VL - 24 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://www.numdam.org/articles/10.5802/jtnb.789/ DO - 10.5802/jtnb.789 LA - en ID - JTNB_2012__24_1_73_0 ER -
%0 Journal Article %A Böckle, Gebhard %A Butenuth, Ralf %T On computing quaternion quotient graphs for function fields %J Journal de théorie des nombres de Bordeaux %D 2012 %P 73-99 %V 24 %N 1 %I Société Arithmétique de Bordeaux %U https://www.numdam.org/articles/10.5802/jtnb.789/ %R 10.5802/jtnb.789 %G en %F JTNB_2012__24_1_73_0
Böckle, Gebhard; Butenuth, Ralf. On computing quaternion quotient graphs for function fields. Journal de théorie des nombres de Bordeaux, Tome 24 (2012) no. 1, pp. 73-99. doi : 10.5802/jtnb.789. https://www.numdam.org/articles/10.5802/jtnb.789/
[BCP] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I. The user language. J. Symbolic Comput. 24 (1997), no. 3-4, 235–265. | MR | Zbl
[Bu] R. Butenuth, Quaternionic Drinfeld modular forms. PhD thesis, in preparation.
[Cr] J. Cremona, The elliptic curve database for conductors to 130000. Algorithmic number theory (Berlin, 2006), Lecture Notes Comp. Sci. 4076, 11–29. Springer, Berlin, 2006. | MR
[De] L. Dembélé, Quaternionic Manin symbols, Brandt matrices and Hilbert modular forms. Math. Comp. 76 (2007), no. 258, 1039–1057. | MR
[GN] E.-U. Gekeler, U. Nonnengardt, Fundamental domains of some arithmetic groups over function fields. Int. J. Math. 6 (1995), 689–708. | MR | Zbl
[GV] M. Greenberg, J. Voight, Computing systems of Hecke eigenvalues associated to Hilbert modular forms. Accepted in Math. Comp. | MR
[GY] P. Gunnells, D. Yasaki, Hecke operators and Hilbert modular forms. Algorithmic number theory (Berlin, 2008), Lecture Notes Comp. Sci. 5011, 387–401. Springer, Berlin, 2008. | MR
[He] F. Hess, Computing Riemann-Roch spaces in algebraic function fields and related topics J. Symbolic Computation 33 (2002), no. 4, 425–445. | MR
[JS] J. C. Jantzen, J. Schwermer, Algebra. Springer-Lehrbuch, 2006.
[KV] M. Kirschmer, J. Voight, Algorithmic enumeration of ideal classes for quaternion orders. SIAM J. Comput. 39 (2010), no. 5, 1714–1747. | MR
[Lu] A. Lubotzky, Discrete groups, expanding graphs and invariant measures. Birkhäuser, 1993. | MR
[LSV] A. Lubotzky, B. Samuels, U. Vishne, Ramanujan complexes of type
[MS] V. K. Murty, J. Scherk, Effective versions of the Chebotarev density theorem for function fields. C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), no. 6, 523–528. | MR | Zbl
[Pa1] M. Papikian, Local diophantine properties of modular curves of
[Pa2] M. Papikian, On generators of arithmetic groups over function fields. Accepted in International Journal of Number Theory.
[Pau] S. Paulus, Lattice basis reduction in function fields. Proceedings of the Third Symposium on Algorithmic Number Theory, ANTS-III (1998), LNCS 1423, 567–575. | MR | Zbl
[Ro] M. Rosen, Number theory in function fields. GTM 210. Springer, Berlin-New York, 2002. | MR
[Se1] J.-P. Serre, Trees. Springer, Berlin-New York, 1980. | MR | Zbl
[Se2] J.-P. Serre, A course in arithmetic. GTM 7. Springer, Berlin-New York, 1973. | MR | Zbl
[Te1] J.T. Teitelbaum, The Poisson Kernel For Drinfeld Modular Curves. J.A.M.S. 4 (1991), 491–511. | MR | Zbl
[Te2] J.T. Teitelbaum, Modular symbols for
[Sti] H. Stichtenoth, Algebraic Function Fields and Codes. GTM 254, Springer, Berlin-New York, (2009). | MR | Zbl
[Ste] W. Stein, Modular forms database, (2004). http://modular.math.washington.edu/Tables.
[Vi] M.-F. Vignéras, Arithmétique des Algèbres de Quaternions. Lecture Notes in Math. 800. Springer, Berlin, 1980. | MR | Zbl
[Vo] J. Voight, Computing fundamental domains for Fuchsian groups. J. Théor. Nombres Bordeaux 21 (2009), 469–491. | Numdam | MR
Cité par Sources :