In this note we explain a way to associate to any number field some connected complex abelian Lie groups. Further, we study the case of non-totally real cubic number fields, and we see that they are intimately related with the Cousin groups (toroidal groups) of complex dimension and rank .
Dans cet article, nous expliquons une façon d’associer à tout corps de nombres certains groupes de Lie complexes et connexes. Nous étudions en particulier le cas des corps de nombres de degré sur qui ne sont pas totalement réels et expliquons le lien entre ceux-ci et les groupes de Cousin (“groupes toroidaux”) de dimension complexe et de rang .
@article{JTNB_2012__24_1_201_0, author = {Valli\`eres, Daniel}, title = {Connected abelian complex {Lie} groups and number fields}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {201--229}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {24}, number = {1}, year = {2012}, doi = {10.5802/jtnb.793}, zbl = {1282.22003}, mrnumber = {2914906}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jtnb.793/} }
TY - JOUR AU - Vallières, Daniel TI - Connected abelian complex Lie groups and number fields JO - Journal de théorie des nombres de Bordeaux PY - 2012 SP - 201 EP - 229 VL - 24 IS - 1 PB - Société Arithmétique de Bordeaux UR - http://archive.numdam.org/articles/10.5802/jtnb.793/ DO - 10.5802/jtnb.793 LA - en ID - JTNB_2012__24_1_201_0 ER -
%0 Journal Article %A Vallières, Daniel %T Connected abelian complex Lie groups and number fields %J Journal de théorie des nombres de Bordeaux %D 2012 %P 201-229 %V 24 %N 1 %I Société Arithmétique de Bordeaux %U http://archive.numdam.org/articles/10.5802/jtnb.793/ %R 10.5802/jtnb.793 %G en %F JTNB_2012__24_1_201_0
Vallières, Daniel. Connected abelian complex Lie groups and number fields. Journal de théorie des nombres de Bordeaux, Volume 24 (2012) no. 1, pp. 201-229. doi : 10.5802/jtnb.793. http://archive.numdam.org/articles/10.5802/jtnb.793/
[1] F. Capocasa and F. Catanese, Periodic meromorphic functions. Acta Math. 166 (1991), 1-2, 27–68. | MR | Zbl
[2] P. Cousin, Sur les fonctions triplement périodiques de deux variables. Acta. Math. 33 (1910), 1, 105–232. | JFM | MR
[3] F. Gherardelli, Varieta’ quasi abeliane a moltiplicazione complessa. Rend. Sem. Mat. Fis. Milano. 57 (1989), 8, 31–36. | MR | Zbl
[4] P. de la Harpe, Introduction to complex tori. Complex analysis and its applications (Lectures, Internat. Sem., Trieste, 1975), Vol. II, pp. 101–144. Internat. Atomic Energy Agency, Vienna, 1976. | MR | Zbl
[5] A. Morimoto, On the classification of noncompact complex abelian Lie groups. Trans. Amer. Math. Soc. 123 (1966), 220–228. | MR | Zbl
[6] G. Shimura, Introduction to the arithmetic theory of automorphic functions. Princeton University Press, 1994. | MR | Zbl
[7] G. Shimura and Y. Taniyama, Complex multiplication of abelian varieties and its applications to number theory. The Mathematical Society of Japan, 1961. | MR | Zbl
[8] G. Shimura, Abelian varieties with complex multiplication and modular functions. Princeton University Press, 1998. | MR | Zbl
[9] C. L. Siegel, Topics in complex function theory I, II, III. Wiley-Interscience, 1969. | Zbl
Cited by Sources: