Dans cet article, nous expliquons une façon d’associer à tout corps de nombres certains groupes de Lie complexes et connexes. Nous étudions en particulier le cas des corps de nombres de degré
In this note we explain a way to associate to any number field some connected complex abelian Lie groups. Further, we study the case of non-totally real cubic number fields, and we see that they are intimately related with the Cousin groups (toroidal groups) of complex dimension
@article{JTNB_2012__24_1_201_0, author = {Valli\`eres, Daniel}, title = {Connected abelian complex {Lie} groups and number fields}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {201--229}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {24}, number = {1}, year = {2012}, doi = {10.5802/jtnb.793}, zbl = {1282.22003}, mrnumber = {2914906}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jtnb.793/} }
TY - JOUR AU - Vallières, Daniel TI - Connected abelian complex Lie groups and number fields JO - Journal de théorie des nombres de Bordeaux PY - 2012 SP - 201 EP - 229 VL - 24 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://www.numdam.org/articles/10.5802/jtnb.793/ DO - 10.5802/jtnb.793 LA - en ID - JTNB_2012__24_1_201_0 ER -
%0 Journal Article %A Vallières, Daniel %T Connected abelian complex Lie groups and number fields %J Journal de théorie des nombres de Bordeaux %D 2012 %P 201-229 %V 24 %N 1 %I Société Arithmétique de Bordeaux %U https://www.numdam.org/articles/10.5802/jtnb.793/ %R 10.5802/jtnb.793 %G en %F JTNB_2012__24_1_201_0
Vallières, Daniel. Connected abelian complex Lie groups and number fields. Journal de théorie des nombres de Bordeaux, Tome 24 (2012) no. 1, pp. 201-229. doi : 10.5802/jtnb.793. https://www.numdam.org/articles/10.5802/jtnb.793/
[1] F. Capocasa and F. Catanese, Periodic meromorphic functions. Acta Math. 166 (1991), 1-2, 27–68. | MR | Zbl
[2] P. Cousin, Sur les fonctions triplement périodiques de deux variables. Acta. Math. 33 (1910), 1, 105–232. | JFM | MR
[3] F. Gherardelli, Varieta’ quasi abeliane a moltiplicazione complessa. Rend. Sem. Mat. Fis. Milano. 57 (1989), 8, 31–36. | MR | Zbl
[4] P. de la Harpe, Introduction to complex tori. Complex analysis and its applications (Lectures, Internat. Sem., Trieste, 1975), Vol. II, pp. 101–144. Internat. Atomic Energy Agency, Vienna, 1976. | MR | Zbl
[5] A. Morimoto, On the classification of noncompact complex abelian Lie groups. Trans. Amer. Math. Soc. 123 (1966), 220–228. | MR | Zbl
[6] G. Shimura, Introduction to the arithmetic theory of automorphic functions. Princeton University Press, 1994. | MR | Zbl
[7] G. Shimura and Y. Taniyama, Complex multiplication of abelian varieties and its applications to number theory. The Mathematical Society of Japan, 1961. | MR | Zbl
[8] G. Shimura, Abelian varieties with complex multiplication and modular functions. Princeton University Press, 1998. | MR | Zbl
[9] C. L. Siegel, Topics in complex function theory I, II, III. Wiley-Interscience, 1969. | Zbl
Cité par Sources :