Soit un corps de nombres. Nous étudions un principe local-global pour les courbes elliptiques admettant ou non une isogénie rationnelle de degré premier . Pour des corps convenables (dont ), nous démontrons ce principe pour tout et tout mais exhibons une courbe elliptique d’invariant modulaire comme contre-exemple pour . Nous montrons alors qu’il s’agit du seul contre-exemple à isomorphisme près lorsque .
Let be a number field. We consider a local-global principle for elliptic curves that admit (or do not admit) a rational isogeny of prime degree . For suitable (including ), we prove that this principle holds for all , and for , but find a counterexample when for an elliptic curve with -invariant . For we show that, up to isomorphism, this is the only counterexample.
Mots clés : elliptic curve, isogeny, local-global principle
@article{JTNB_2012__24_2_475_0, author = {Sutherland, Andrew V.}, title = {A local-global principle for rational isogenies of prime degree}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {475--485}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {24}, number = {2}, year = {2012}, doi = {10.5802/jtnb.807}, zbl = {1276.11095}, mrnumber = {2950703}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jtnb.807/} }
TY - JOUR AU - Sutherland, Andrew V. TI - A local-global principle for rational isogenies of prime degree JO - Journal de théorie des nombres de Bordeaux PY - 2012 SP - 475 EP - 485 VL - 24 IS - 2 PB - Société Arithmétique de Bordeaux UR - http://archive.numdam.org/articles/10.5802/jtnb.807/ DO - 10.5802/jtnb.807 LA - en ID - JTNB_2012__24_2_475_0 ER -
%0 Journal Article %A Sutherland, Andrew V. %T A local-global principle for rational isogenies of prime degree %J Journal de théorie des nombres de Bordeaux %D 2012 %P 475-485 %V 24 %N 2 %I Société Arithmétique de Bordeaux %U http://archive.numdam.org/articles/10.5802/jtnb.807/ %R 10.5802/jtnb.807 %G en %F JTNB_2012__24_2_475_0
Sutherland, Andrew V. A local-global principle for rational isogenies of prime degree. Journal de théorie des nombres de Bordeaux, Tome 24 (2012) no. 2, pp. 475-485. doi : 10.5802/jtnb.807. http://archive.numdam.org/articles/10.5802/jtnb.807/
[1] Yuri Bilu, Pierre Parent, and Marusia Rebolledo, Rational points on . To appear in Annales de l’institut Fourier, arXiv:1104.4641v1 (2011).
[2] David A. Cox, Primes of the form : Fermat, class field theory, and complex multiplication. John Wiley and Sons, 1989. | MR | Zbl
[3] John Cremona, The elliptic curve database for conductors to . Algorithmic Number Theory Symposium–ANTS VII (F. Hess, S. Pauli, and M. Pohst, eds.), Lecture Notes in Computer Science, vol. 4076, Springer-Verlag, 2006, pp. 11–29. | MR
[4] Noam D. Elkies, The Klein quartic in number theory. The Eightfold Way: The Beauty of Klein’s Quartic Curve (Silvio Levy, ed.), Cambridge University Press, 2001, pp. 51–102. | MR | Zbl
[5] —, private communication, March 2010.
[6] Jun-Ichi Igusa, Kroneckerian model of fields of elliptic modular functions. American Journal of Mathematics 81 (1959), 561–577. | MR | Zbl
[7] Kenneth Ireland and Michael Rosen, A classical introduction to modern number theory, second ed., Springer-Verlag, 1990. | MR | Zbl
[8] Nicholas M. Katz, Galois properties of torsion points on abelian varieties. Inventiones Mathematicae 62 (1981), no. 3, 481–502. | MR | Zbl
[9] Serge Lang, Introduction to modular forms, Springer, 1976. | MR | Zbl
[10] —, Elliptic functions, second ed., Springer-Verlag, 1987. | MR
[11] Barry Mazur, An introduction to the deformation theory of Galois representations. Modular forms and Fermat’s last theorem, Springer, 1997. | MR | Zbl
[12] Pierre J. R. Parent, Towards the triviality of for . Compositio Mathematica 141 (2005), 561–572. | MR
[13] René Schoof, Counting points on elliptic curves over finite fields. Journal de Théorie des Nombres de Bordeaux 7 (1995), 219–254. | Numdam | MR | Zbl
[14] Jean-Pierre Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques. Inventiones Mathematicae 15 (1972), no. 2, 259–331. | MR | Zbl
Cité par Sources :